肝内胆管癌起源细胞的研究进展和临床启示

桑宸 高强

桑宸, 高强. 肝内胆管癌起源细胞的研究进展和临床启示[J]. 中国肿瘤临床, 2023, 50(6): 286-290. doi: 10.12354/j.issn.1000-8179.2023.20221113
引用本文: 桑宸, 高强. 肝内胆管癌起源细胞的研究进展和临床启示[J]. 中国肿瘤临床, 2023, 50(6): 286-290. doi: 10.12354/j.issn.1000-8179.2023.20221113
Chen Sang, Qiang Gao. Research progress and clinical implication on origin cells of intrahepatic cholangiocarcinoma[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(6): 286-290. doi: 10.12354/j.issn.1000-8179.2023.20221113
Citation: Chen Sang, Qiang Gao. Research progress and clinical implication on origin cells of intrahepatic cholangiocarcinoma[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(6): 286-290. doi: 10.12354/j.issn.1000-8179.2023.20221113

肝内胆管癌起源细胞的研究进展和临床启示

doi: 10.12354/j.issn.1000-8179.2023.20221113
详细信息
    作者简介:

    桑宸:专业方向为肿瘤异质性和个体化治疗

    通讯作者:

    高强 gaoqiang@fudan.edu.cn

Research progress and clinical implication on origin cells of intrahepatic cholangiocarcinoma

More Information
  • 摘要: 肝内胆管癌(intrahepatic cholangiocarcinoma,iCCA)是一种预后较差的上皮性恶性肿瘤,发病率和死亡率逐年上升。以化疗为主的标准治疗方案效果不佳,亟需开发有效的精准治疗新策略。iCCA在组织形态以及分子表达水平上表现出的高度异质性,对临床精准治疗造成了巨大阻碍。肿瘤异质性的产生是多种复杂因素相互作用的结果,包括致病因素、不同的基因突变、分子表达谱的可塑性变化以及不同的潜在起源细胞等。目前在小鼠模型中使用遗传谱系示踪系统明确了胆管上皮细胞、肝细胞或肝母细胞都可能是iCCA的起源细胞。本文系统性回顾了这些肿瘤起源细胞的相关研究,并认为将iCCA肿瘤起源细胞的相关信息综合到当前的组织病理学和分子分型系统中,有望对iCCA的临床精准诊疗提供指导和借鉴。

     

  • [1] Banales J M, Marin J, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9):557-588. doi: 10.1038/s41575-020-0310-z
    [2] Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer[J]. N Engl J Med, 2010, 362(14):1273-1281. doi: 10.1056/NEJMoa0908721
    [3] Rizzo A, Ricci AD, Brandi G. Pemigatinib: hot topics behind the first approval of a targeted therapy in cholangiocarcinoma[J]. Cancer Treat Res Commun, 2021, 27:100337. doi: 10.1016/j.ctarc.2021.100337
    [4] Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(6):796-807. doi: 10.1016/S1470-2045(20)30157-1
    [5] Li W, Wang YQ, Yu YY, et al. Toripalimab in advanced biliary tract cancer[J]. Innovation, 2022, 3(4):100255.
    [6] Shi G M, Jian Z, Fan J, et al. Phase Ⅱ study of lenvatinib in combination with GEMOX chemotherapy for advanced intrahepatic cholangiocarcinoma.[J]. J Clin Oncol, 2021, 39(15):e16163-e16163.
    [7] Jian Z, Fan J, Shi GM, et al. Gemox chemotherapy in combination with anti-PD1 antibody toripalimab and lenvatinib as first-line treatment for advanced intrahepatic cholangiocarcinoma: A phase 2 clinical trial.[J]. J Clin Oncol, 2021, 39(15):4094-4094.
    [8] Barker N, Ridgway RA, van Es JH, et al. Crypt stem cells as the cells-of-origin of intestinal cancer[J]. Nature, 2009, 457(7229):608-611. doi: 10.1038/nature07602
    [9] Goldstein A S, Huang J, Guo C, et al. Identification of a cell of origin for human prostate cancer[J]. Science, 2010, 329(5991):568-571. doi: 10.1126/science.1189992
    [10] 朱志文,黄海丽.胆管上皮细胞的生理学特点及其与肝脏疾病相关性的研究进展[J].肝胆胰外科杂志,2022,34(03):187-192.
    [11] Guest RV, Boulter L, Kendall TJ, et al. Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma[J]. Cancer Res, 2014, 74(4):1005-1010. doi: 10.1158/0008-5472.CAN-13-1911
    [12] Ikenoue T, Terakado Y, Nakagawa H, et al. A novel mouse model of intrahepatic cholangiocarcinoma induced by liver-specific Kras activation and Pten deletion[J]. Sci Rep, 2016, 6:23899. doi: 10.1038/srep23899
    [13] Lin YK, Fang Z, Jiang TY, et al. Combination of Kras activation and PTEN deletion contributes to murine hepatopancreatic ductal malignancy[J]. Cancer Lett, 2018, 421:161-169. doi: 10.1016/j.canlet.2018.02.017
    [14] Fan B, Malato Y, Calvisi DF, et al. Cholangiocarcinomas can originate from hepatocytes in mice[J]. J Clin Invest, 2012, 122(8):2911-2915. doi: 10.1172/JCI63212
    [15] Sekiya S, Suzuki A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes[J]. J Clin Invest, 2012, 122(11):3914-3918. doi: 10.1172/JCI63065
    [16] Hill MA, Alexander WB, Guo B, et al. Kras and Tp53 mutations cause cholangiocyte-and hepatocyte-derived cholangiocarcinoma[J]. Cancer Res, 2018, 78(16):4445-4451. doi: 10.1158/0008-5472.CAN-17-1123
    [17] Holczbauer A, Factor VM, Andersen JB, et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types[J]. Gastroenterology, 2013, 145(1):221-231. doi: 10.1053/j.gastro.2013.03.013
    [18] Lee KP, Lee J H, Kim TS, et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis[J]. Proc Natl Acad Sci U S A, 2010, 107(18):8248-8253. doi: 10.1073/pnas.0912203107
    [19] Ferguson LP, Diaz E, Reya T. The Role of the microenvironment and immune system in regulating stem cell fate in cancer[J]. Trends Cancer, 2021, 7(7):624-634. doi: 10.1016/j.trecan.2020.12.014
    [20] Yanger K, Knigin D, Zong Y, et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation[J]. Cell Stem Cell, 2014, 15(3):340-349. doi: 10.1016/j.stem.2014.06.003
    [21] Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury[J]. Hepatology, 2005, 41(3):535-544. doi: 10.1002/hep.20600
    [22] Deng X, Zhang X, Li W, et al. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes[J]. Cell Stem Cell, 2018, 23(1):114-122. doi: 10.1016/j.stem.2018.05.022
    [23] Ji S, Zhu L, Gao Y, et al. Baf60b-mediated ATM-p53 activation blocks cell identity conversion by sensing chromatin opening[J]. Cell Res, 2017, 27(5):642-656. doi: 10.1038/cr.2017.36
    [24] He J, Lu H, Zou Q, et al. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish[J]. Gastroenterology, 2014, 146(3):789-800. doi: 10.1053/j.gastro.2013.11.045
    [25] He L, Li Y, Li Y, et al. Enhancing the precision of genetic lineage tracing using dual recombinases[J]. Nat Med, 2017, 23(12):1488-1498. doi: 10.1038/nm.4437
    [26] Morris SM, Carter KT, Baek JY, et al. TGF-beta signaling alters the pattern of liver tumorigenesis induced by Pten inactivation[J]. Oncogene, 2015, 34(25):3273-3282. doi: 10.1038/onc.2014.258
    [27] Katz SF, Lechel A, Obenauf AC, et al. Disruption of Trp53 in livers of mice induces formation of carcinomas with bilineal differentiation[J]. Gastroenterology, 2012, 142(5):1229-1239. doi: 10.1053/j.gastro.2012.02.009
    [28] Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver[J]. Nature, 2014, 514(7522):380-384. doi: 10.1038/nature13589
    [29] Ding N, Che L, Li XL, et al. Oncogenic potential of IDH1R132C mutant in cholangiocarcinoma development in mice[J]. World J Gastroenterol, 2016, 22(6):2071-2080. doi: 10.3748/wjg.v22.i6.2071
    [30] Zhang S, Zhou D. Role of the transcriptional coactivators YAP/TAZ in liver cancer[J]. Curr Opin Cell Biol, 2019, 61:64-71. doi: 10.1016/j.ceb.2019.07.006
    [31] Li X, Tao J, Cigliano A, et al. Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver[J]. Oncotarget, 2015, 6(12):10102-10115. doi: 10.18632/oncotarget.3546
    [32] Saha SK, Parachoniak CA, Ghanta KS, et al. Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer[J]. Nature, 2014, 513(7516):110-114. doi: 10.1038/nature13441
    [33] Dong LQ, Shi Y, Ma LJ, et al. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma[J]. J Hepatol, 2018, 69(1):89-98. doi: 10.1016/j.jhep.2018.02.029
    [34] Seehawer M, Heinzmann F, D'Artista L, et al. Necroptosis microenvironment directs lineage commitment in liver cancer[J]. Nature, 2018, 562(7725):69-75. doi: 10.1038/s41586-018-0519-y
    [35] Yamada D, Rizvi S, Razumilava N, et al. IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism[J]. Hepatology, 2015, 61(5):1627-1642. doi: 10.1002/hep.27687
    [36] Dong L, Lu D, Chen R, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma[J]. Cancer Cell, 2022, 40(1):70-87. doi: 10.1016/j.ccell.2021.12.006
  • 加载中
计量
  • 文章访问数:  80
  • HTML全文浏览量:  25
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 录用日期:  2022-09-19
  • 修回日期:  2022-09-08

目录

    /

    返回文章
    返回