[1]
|
Banales J M, Marin J, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9):557-588. doi: 10.1038/s41575-020-0310-z
|
[2]
|
Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer[J]. N Engl J Med, 2010, 362(14):1273-1281. doi: 10.1056/NEJMoa0908721
|
[3]
|
Rizzo A, Ricci AD, Brandi G. Pemigatinib: hot topics behind the first approval of a targeted therapy in cholangiocarcinoma[J]. Cancer Treat Res Commun, 2021, 27:100337. doi: 10.1016/j.ctarc.2021.100337
|
[4]
|
Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(6):796-807. doi: 10.1016/S1470-2045(20)30157-1
|
[5]
|
Li W, Wang YQ, Yu YY, et al. Toripalimab in advanced biliary tract cancer[J]. Innovation, 2022, 3(4):100255.
|
[6]
|
Shi G M, Jian Z, Fan J, et al. Phase Ⅱ study of lenvatinib in combination with GEMOX chemotherapy for advanced intrahepatic cholangiocarcinoma.[J]. J Clin Oncol, 2021, 39(15):e16163-e16163.
|
[7]
|
Jian Z, Fan J, Shi GM, et al. Gemox chemotherapy in combination with anti-PD1 antibody toripalimab and lenvatinib as first-line treatment for advanced intrahepatic cholangiocarcinoma: A phase 2 clinical trial.[J]. J Clin Oncol, 2021, 39(15):4094-4094.
|
[8]
|
Barker N, Ridgway RA, van Es JH, et al. Crypt stem cells as the cells-of-origin of intestinal cancer[J]. Nature, 2009, 457(7229):608-611. doi: 10.1038/nature07602
|
[9]
|
Goldstein A S, Huang J, Guo C, et al. Identification of a cell of origin for human prostate cancer[J]. Science, 2010, 329(5991):568-571. doi: 10.1126/science.1189992
|
[10]
|
朱志文,黄海丽.胆管上皮细胞的生理学特点及其与肝脏疾病相关性的研究进展[J].肝胆胰外科杂志,2022,34(03):187-192.
|
[11]
|
Guest RV, Boulter L, Kendall TJ, et al. Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma[J]. Cancer Res, 2014, 74(4):1005-1010. doi: 10.1158/0008-5472.CAN-13-1911
|
[12]
|
Ikenoue T, Terakado Y, Nakagawa H, et al. A novel mouse model of intrahepatic cholangiocarcinoma induced by liver-specific Kras activation and Pten deletion[J]. Sci Rep, 2016, 6:23899. doi: 10.1038/srep23899
|
[13]
|
Lin YK, Fang Z, Jiang TY, et al. Combination of Kras activation and PTEN deletion contributes to murine hepatopancreatic ductal malignancy[J]. Cancer Lett, 2018, 421:161-169. doi: 10.1016/j.canlet.2018.02.017
|
[14]
|
Fan B, Malato Y, Calvisi DF, et al. Cholangiocarcinomas can originate from hepatocytes in mice[J]. J Clin Invest, 2012, 122(8):2911-2915. doi: 10.1172/JCI63212
|
[15]
|
Sekiya S, Suzuki A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes[J]. J Clin Invest, 2012, 122(11):3914-3918. doi: 10.1172/JCI63065
|
[16]
|
Hill MA, Alexander WB, Guo B, et al. Kras and Tp53 mutations cause cholangiocyte-and hepatocyte-derived cholangiocarcinoma[J]. Cancer Res, 2018, 78(16):4445-4451. doi: 10.1158/0008-5472.CAN-17-1123
|
[17]
|
Holczbauer A, Factor VM, Andersen JB, et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types[J]. Gastroenterology, 2013, 145(1):221-231. doi: 10.1053/j.gastro.2013.03.013
|
[18]
|
Lee KP, Lee J H, Kim TS, et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis[J]. Proc Natl Acad Sci U S A, 2010, 107(18):8248-8253. doi: 10.1073/pnas.0912203107
|
[19]
|
Ferguson LP, Diaz E, Reya T. The Role of the microenvironment and immune system in regulating stem cell fate in cancer[J]. Trends Cancer, 2021, 7(7):624-634. doi: 10.1016/j.trecan.2020.12.014
|
[20]
|
Yanger K, Knigin D, Zong Y, et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation[J]. Cell Stem Cell, 2014, 15(3):340-349. doi: 10.1016/j.stem.2014.06.003
|
[21]
|
Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury[J]. Hepatology, 2005, 41(3):535-544. doi: 10.1002/hep.20600
|
[22]
|
Deng X, Zhang X, Li W, et al. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes[J]. Cell Stem Cell, 2018, 23(1):114-122. doi: 10.1016/j.stem.2018.05.022
|
[23]
|
Ji S, Zhu L, Gao Y, et al. Baf60b-mediated ATM-p53 activation blocks cell identity conversion by sensing chromatin opening[J]. Cell Res, 2017, 27(5):642-656. doi: 10.1038/cr.2017.36
|
[24]
|
He J, Lu H, Zou Q, et al. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish[J]. Gastroenterology, 2014, 146(3):789-800. doi: 10.1053/j.gastro.2013.11.045
|
[25]
|
He L, Li Y, Li Y, et al. Enhancing the precision of genetic lineage tracing using dual recombinases[J]. Nat Med, 2017, 23(12):1488-1498. doi: 10.1038/nm.4437
|
[26]
|
Morris SM, Carter KT, Baek JY, et al. TGF-beta signaling alters the pattern of liver tumorigenesis induced by Pten inactivation[J]. Oncogene, 2015, 34(25):3273-3282. doi: 10.1038/onc.2014.258
|
[27]
|
Katz SF, Lechel A, Obenauf AC, et al. Disruption of Trp53 in livers of mice induces formation of carcinomas with bilineal differentiation[J]. Gastroenterology, 2012, 142(5):1229-1239. doi: 10.1053/j.gastro.2012.02.009
|
[28]
|
Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver[J]. Nature, 2014, 514(7522):380-384. doi: 10.1038/nature13589
|
[29]
|
Ding N, Che L, Li XL, et al. Oncogenic potential of IDH1R132C mutant in cholangiocarcinoma development in mice[J]. World J Gastroenterol, 2016, 22(6):2071-2080. doi: 10.3748/wjg.v22.i6.2071
|
[30]
|
Zhang S, Zhou D. Role of the transcriptional coactivators YAP/TAZ in liver cancer[J]. Curr Opin Cell Biol, 2019, 61:64-71. doi: 10.1016/j.ceb.2019.07.006
|
[31]
|
Li X, Tao J, Cigliano A, et al. Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver[J]. Oncotarget, 2015, 6(12):10102-10115. doi: 10.18632/oncotarget.3546
|
[32]
|
Saha SK, Parachoniak CA, Ghanta KS, et al. Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer[J]. Nature, 2014, 513(7516):110-114. doi: 10.1038/nature13441
|
[33]
|
Dong LQ, Shi Y, Ma LJ, et al. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma[J]. J Hepatol, 2018, 69(1):89-98. doi: 10.1016/j.jhep.2018.02.029
|
[34]
|
Seehawer M, Heinzmann F, D'Artista L, et al. Necroptosis microenvironment directs lineage commitment in liver cancer[J]. Nature, 2018, 562(7725):69-75. doi: 10.1038/s41586-018-0519-y
|
[35]
|
Yamada D, Rizvi S, Razumilava N, et al. IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism[J]. Hepatology, 2015, 61(5):1627-1642. doi: 10.1002/hep.27687
|
[36]
|
Dong L, Lu D, Chen R, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma[J]. Cancer Cell, 2022, 40(1):70-87. doi: 10.1016/j.ccell.2021.12.006
|