类器官模型在肿瘤精准诊疗中的应用

王海霞 张聪 邹冬玲

王海霞, 张聪, 邹冬玲. 类器官模型在肿瘤精准诊疗中的应用[J]. 中国肿瘤临床, 2023, 50(6): 291-295. doi: 10.12354/j.issn.1000-8179.2023.20221125
引用本文: 王海霞, 张聪, 邹冬玲. 类器官模型在肿瘤精准诊疗中的应用[J]. 中国肿瘤临床, 2023, 50(6): 291-295. doi: 10.12354/j.issn.1000-8179.2023.20221125
Haixia Wang, Cong Zhang, Dongling Zou. The application of organoid models in cancer precision medicine[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(6): 291-295. doi: 10.12354/j.issn.1000-8179.2023.20221125
Citation: Haixia Wang, Cong Zhang, Dongling Zou. The application of organoid models in cancer precision medicine[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(6): 291-295. doi: 10.12354/j.issn.1000-8179.2023.20221125

类器官模型在肿瘤精准诊疗中的应用

doi: 10.12354/j.issn.1000-8179.2023.20221125
基金项目: 本文课题受国家自然科学基金面上项目(编号:82073129)、重庆市卫生适宜技术推广项目(编号:2021jstg001)、北京科创基金项目(编号:KC2021-JX-0186-129)、重庆市科技局项目(编号:2023ZDXM029、cstc2020jxjl130019)和重庆市沙坪坝区科技局项目(编号:Jcd2022102)资助
详细信息
    作者简介:

    王海霞:专业方向为卵巢癌发生发展及复发耐药机制的研究

    通讯作者:

    邹冬玲 13570049@qq.com

The application of organoid models in cancer precision medicine

Funds: This work was supported by the National Natural Science Foundation of China (No. 82073129), Chongqing Health Appropriate Technology Promotion Project (No. 2021jstg001), Beijing Science & Technology Innovation Fund (No. KC2021-JX-0186-129), Chongqing Science and Technology Bureau (No. 2023ZDXM029, No. cstc2020jxjl130019), and Chongqing Shapingba District Bureau of Science and Technology (No. Jcd2022102)
More Information
  • 摘要: 过去10年中,三维类器官技术得到了快速发展,目前已经可以从正常组织和恶性肿瘤组织中高效地建立类器官。患者来源的肿瘤类器官(patient-derived tumor- organoids,PDOs)可以很好地保留亲本肿瘤的生理病理学及遗传学特征,最大限度地保持肿瘤异质性。PDOs已被用于阐明关键的科学问题,包括感染病原体或遗传/表观遗传学改变与肿瘤发生之间的关系、耐药机制、预测患者对选定治疗方案的反应。随着类器官与肿瘤微环境的细胞成分共培养系统的建立,该技术现在也被应用于快速发展的免疫肿瘤学领域。本文综述了类器官技术在肿瘤精准医学领域的研究现状、应用及面临的挑战。

     

  • [1] Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265. doi: 10.1038/nature07935
    [2] Idris M, Alves MM, Hofstra RMW, et al. Intestinal multicellular organoids to study colorectal cancer[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2):188586. doi: 10.1016/j.bbcan.2021.188586
    [3] Kopper O, de Witte CJ, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity[J]. Nat Med, 2019, 25(5):838-849. doi: 10.1038/s41591-019-0422-6
    [4] Maenhoudt N, Defraye C, Boretto M, et al. developing organoids from ovarian cancer as experimental and preclinical models[J]. Stem Cell Reports, 2020, 14(4):717-729. doi: 10.1016/j.stemcr.2020.03.004
    [5] Lo Y H, Kolahi K S, Du Y, et al. A CRISPR/Cas9-Engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation[J]. Cancer Discov, 2021, 11(6):1562-1581. doi: 10.1158/2159-8290.CD-20-1109
    [6] Huang W, Navarro-Serer B, Jeong YJ, et al. Pattern of Invasion in Human Pancreatic Cancer Organoids Is Associated with Loss of SMAD4 and Clinical Outcome[J]. Cancer Res, 2020, 80(13):2804-2817. doi: 10.1158/0008-5472.CAN-19-1523
    [7] Rosenbluth JM, Schackmann RCJ, Gray GK, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages[J]. Nat Commun, 2020, 11(1):1711. doi: 10.1038/s41467-020-15548-7
    [8] Sampaziotis F, Muraro D, Tysoe OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver[J]. Science, 2021, 371(6531):839-846. doi: 10.1126/science.aaz6964
    [9] Silvestri VL, Henriet E, Linville RM, et al. A tissue-engineered 3D microvessel model reveals the dynamics of mosaic vessel formation in breast cancer[J]. Cancer Res, 2020, 80(19):4288-4301. doi: 10.1158/0008-5472.CAN-19-1564
    [10] Bartfeld S, Bayram T, van de Wetering M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection[J]. Gastroenterology, 2015, 148(1):126-136.e6. doi: 10.1053/j.gastro.2014.09.042
    [11] McCracken KW, Catá EM, Crawford CM, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids[J]. Nature, 2014, 516(7531):400-404. doi: 10.1038/nature13863
    [12] Scanu T, Spaapen RM, Bakker JM, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma[J]. Cell Host Microbe, 2015, 17(6):763-774. doi: 10.1016/j.chom.2015.05.002
    [13] De Crignis E, Hossain T, Romal S, et al. Application of human liver organoids as a patient-derived primary model for HBV infection and related hepatocellular carcinoma[J]. Elife, 2021, 10:e60747. doi: 10.7554/eLife.60747
    [14] Lõhmussaar K, Oka R, Espejo Valle-Inclan J, et al. Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer[J]. Cell stem cell, 2021, 28(8):1380-1396. doi: 10.1016/j.stem.2021.03.012
    [15] Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids[J]. Nat Med, 2015, 21(3):256-262. doi: 10.1038/nm.3802
    [16] Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521(7550):43-47. doi: 10.1038/nature14415
    [17] Dekkers JF, Whittle JR, Vaillant F, et al. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids[J]. J Natl Cancer Inst, 2020, 112(5):540-544.
    [18] Chen P, Zhang X, Ding R, et al. Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer[J]. Adv Sci (Weinh), 2021, 8(22):e2101176.
    [19] Yao Y, Xu X, Yang L, Zhu J, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer[J]. Cell stem cell, 2020, 26(1):17-26. doi: 10.1016/j.stem.2019.10.010
    [20] Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening[J]. Proc Natl Acad Sci U S A, 2019, 116(52):26580-26590.
    [21] Wensink GE, Elias SG, Mullenders J, et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients[J]. NPJ Precis Oncol, 2021, 5(1):30. doi: 10.1038/s41698-021-00168-1
    [22] Beshiri ML, Tice CM, Tran C, et al. A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening[J]. Clin Cancer Res, 2018, 24(17):4332-4345. doi: 10.1158/1078-0432.CCR-18-0409
    [23] Pamarthy S, Sabaawy HE. Patient derived organoids in prostate cancer: improving therapeutic efficacy in precision medicine[J]. Mol Cancer, 2021, 20(1):125. doi: 10.1186/s12943-021-01426-3
    [24] Welti J, Sharp A, Yuan W, et al. Targeting bromodomain and extra-terminal (BET) family proteins in castration-resistant prostate cancer (CRPC)[J]. Clin Cancer Res, 2018, 24(13):3149-3162. doi: 10.1158/1078-0432.CCR-17-3571
    [25] 赵冰,宋伟,王海霞.肿瘤类器官诊治平台的质量控制标准中国专家共识(2022年版)[J].中国癌症杂志,2022,32(7):657-68.
    [26] Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7):1972-1988. doi: 10.1016/j.cell.2018.11.021
    [27] Dijkstra KK, Cattaneo CM, Weeber F, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids[J]. Cell, 2018, 174(6):1586-1598. doi: 10.1016/j.cell.2018.07.009
    [28] Cattaneo CM, Dijkstra KK, Fanchi LF, et al. Tumor organoid-T-cell coculture systems[J]. Nat Protoc, 2020, 15(1):15-39. doi: 10.1038/s41596-019-0232-9
    [29] Meng Q, Xie S, Gray GK, et al. Empirical identification and validation of tumor-targeting T cell receptors from circulation using autologous pancreatic tumor organoids[J]. J Immunother Cancer, 2021,9(11):e003213.
    [30] Schnalzger TE, de Groot MH, Zhang C, et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids[J]. EMBO J, 2019, 38(12):e100928
    [31] van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4):933-945.
    [32] Perrone F, Zilbauer M. Biobanking of human gut organoids for translational research[J]. Exp Mol Med, 2021, 53(10):1451-1458.
  • 加载中
计量
  • 文章访问数:  129
  • HTML全文浏览量:  18
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 录用日期:  2022-11-24
  • 修回日期:  2022-10-06

目录

    /

    返回文章
    返回