多肽药物在肿瘤免疫治疗中的研究进展

牛潇爽 胡争 周秀曼 高艳锋

牛潇爽, 胡争, 周秀曼, 高艳锋. 多肽药物在肿瘤免疫治疗中的研究进展[J]. 中国肿瘤临床, 2023, 50(6): 271-277. doi: 10.12354/j.issn.1000-8179.2023.20221128
引用本文: 牛潇爽, 胡争, 周秀曼, 高艳锋. 多肽药物在肿瘤免疫治疗中的研究进展[J]. 中国肿瘤临床, 2023, 50(6): 271-277. doi: 10.12354/j.issn.1000-8179.2023.20221128
Xiaoshuang Niu, Zheng Hu, Xiuman Zhou, Yanfeng Gao. Research progress on peptide drugs in cancer immunotherapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(6): 271-277. doi: 10.12354/j.issn.1000-8179.2023.20221128
Citation: Xiaoshuang Niu, Zheng Hu, Xiuman Zhou, Yanfeng Gao. Research progress on peptide drugs in cancer immunotherapy[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(6): 271-277. doi: 10.12354/j.issn.1000-8179.2023.20221128

多肽药物在肿瘤免疫治疗中的研究进展

doi: 10.12354/j.issn.1000-8179.2023.20221128
详细信息
    作者简介:

    牛潇爽:专业方向为肿瘤免疫检查点阻断剂的筛选及活性研究

    通讯作者:

    高艳锋 gaoyf29@mail.sysu.edu.cn

Research progress on peptide drugs in cancer immunotherapy

Funds: This work was supported by the National Nature Science Foundation of China (No. U20A20369)
More Information
  • 摘要: 免疫治疗是当前最受关注的肿瘤治疗方式之一,免疫检查点抑制剂、细胞治疗和肿瘤疫苗等免疫治疗手段,在临床上取得了重要进展。近年来,除了以单抗药物为代表的免疫检查点抑制剂以外,多肽药物也逐渐受到关注。本文着重总结多肽药物在免疫检查点抑制剂方面的研究进展及应用,包括单靶点多肽阻断剂、双功能多肽阻断剂、自组装多肽,以及免疫检查点多肽在肿瘤诊断中的应用等,并对多肽药物目前面临的瓶颈问题提出思考,为多肽药物在肿瘤免疫治疗中的应用提供新的思路。

     

  • 表  1  免疫检查点多肽阻断剂

    靶点多肽   氨基酸序列 类型功能
    PD-1P-F4FSGTVTTAGLLF L肽P-F4-NPs纳米粒子瘤内给药显著抑制CT26荷瘤模型的肿瘤生长
    C8CKWYRPSEC 环肽抑制CT26、B16-OVA以及B16荷瘤模型的肿瘤
    生长
    PD-L1CLP-002WHRSYYTWNLNT L肽抑制CT26荷瘤模型的肿瘤生长
    TPP-1YASYHCWCWRDPGRS L肽具有激活T细胞杀伤肿瘤的作用
    SPAMMPIFLDHILNKFWILHYA L肽选择性高亲和hPD-L1
    Pep1CLQKTPKQC 环肽与PD-L1结合力为373 nM,显著抑制CT26荷瘤模型的肿瘤生长
    Pep2CVRARTR L肽与PD-L1结合力为281 nM,相较于pep1,pep2的抑瘤效果更为显著
    DPPA-1NYSKPTDRQYHF D肽首个PD-1/PD-L1抗酶解的D肽阻断剂,显著抑制CT26荷瘤模型的肿瘤生长
    OPBP-1GQSEHHMRVYSF D肽首个报道的可口服的肿瘤免疫检查点多肽阻断剂,经TMC包裹口服生物利用度显著提高
    NP-12 分枝肽显著抑制CT26和B16F10荷瘤模型的肿瘤生长,与化疗联合能够协同增强抗肿瘤效果
    MOPD-1IQIREYKRCGQDEERVRRECKERGERQNCHYVIHKEGNCYVCGIICL 环肽抵抗酶降解,显著抑制CT26荷瘤模型的肿瘤生长
    TIGITDTBP-3GGYTFHWHRLNP D肽首个TIGIT抗酶解的D肽阻断剂,已被用于临床PET-CT
    LAG-3C25CVPMTYRAC 环肽显著抑制CT26、B16和B16-OVA荷瘤模型的肿瘤生长
    CD47pep-20-D12awsATWSNYwrh D构型氨基酸
     保护肽
    显著抑制MC38和B16-OVA荷瘤模型的肿瘤生长,与放疗联用具有显著的协同效果
    SIRPαD4-2YRYSAVYSIHPSWCG 环肽协同增强利妥昔单抗抑制Raji荷瘤模型的肿瘤生长,与gp75抗体联用能够减少B16BL6荷瘤模型的肺转移
    下载: 导出CSV
  • [1] Vlieghe P, Lisowski V, Martinez J, et al. Synthetic therapeutic peptides: science and market[J]. Drug Discov Today, 2010, 15(1-2):40-56. doi: 10.1016/j.drudis.2009.10.009
    [2] Liu R, Li X, Xiao W, et al. Tumor-targeting peptides from combinatorial libraries[J]. Adv Drug Deliv Rev, 2017(110-111):13-37.
    [3] Tao H, Cheng L, Liu L, et al. A PD-1 peptide antagonist exhibits potent anti-tumor and immune regulatory activity[J]. Cancer Lett, 2020, 493:91-101. doi: 10.1016/j.canlet.2020.08.009
    [4] Liu H, Zhao Z, Zhang L, et al. Discovery of low-molecular weight anti-PD-L1 peptides for cancer immunotherapy[J]. J Immunother Cancer, 2019, 7(1):270. doi: 10.1186/s40425-019-0705-y
    [5] Li C, Zhang N, Zhou J, et al. Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy[J]. Cancer Immunol Res, 2018, 6(2):178-188. doi: 10.1158/2326-6066.CIR-17-0035
    [6] Kamalinia G, Engel BJ, Srinivasamani A, et al. mRNA display discovery of a novel programmed death ligand 1 (PD-L1) binding peptide (a peptide ligand for PD-L1)[J]. ACS Chem Biol, 2020, 15(6):1630-1641. doi: 10.1021/acschembio.0c00264
    [7] Zhai W, Zhou X, Zhai M, et al. Blocking of the PD-1/PD-L1 interaction by a novel cyclic peptide inhibitor for cancer immunotherapy[J]. Sci China Life Sci, 2020, 64(4):548-562.
    [8] Gurung S, Khan F, Gunassekaran GR, et al. Phage display-identified PD-L1-binding peptides reinvigorate T-cell activity and inhibit tumor progression[J]. Biomaterials, 2020, 247:119984. doi: 10.1016/j.biomaterials.2020.119984
    [9] Chang HN, Liu BY, Qi YK, et al. Blocking of the PD-1/PD-L1 interaction by a D-peptide antagonist for cancer immunotherapy[J]. Angew Chem Int Ed Engl, 2015, 54(40):11760-11764. doi: 10.1002/anie.201506225
    [10] Li W, Zhu X, Zhou X, et al. An orally available PD-1/PD-L1 blocking peptide OPBP-1-loaded trimethyl chitosan hydrogel for cancer immunotherapy[J]. J Control Release, 2021:334376-388.
    [11] Sasikumar PG, Ramachandra RK, Adurthi S, et al. A rationally designed peptide antagonist of the PD-1 signaling pathway as an immunomodulatory agent for cancer therapy[J]. Mol Cancer Ther, 2019, 18(6):1081-1091. doi: 10.1158/1535-7163.MCT-18-0737
    [12] Maute RL, Gordon SR, Mayer AT, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging[J]. Proc Natl Acad Sci U S A, 2015, 112(47):E6506-6514.
    [13] Jeong WJ, Bu J, Han Y, et al. Nanoparticle conjugation stabilizes and multimerizes β-hairpin peptides to effectively target PD-1/PD-L1 β-sheet-rich interfaces[J]. J Am Chem Soc, 2020, 142(4):1832-1837. doi: 10.1021/jacs.9b10160
    [14] Yin H, Zhou X, Huang YH, et al. Rational design of potent peptide inhibitors of the PD-1: PD-L1 interaction for cancer immunotherapy[J]. J Am Chem Soc, 2021, 143(44):18536-18547. doi: 10.1021/jacs.1c08132
    [15] Pan C, Yang H, Lu Y, et al. Recent advance of peptide-based molecules and nonpeptidic small-molecules modulating PD-1/PD-L1 protein-protein interaction or targeting PD-L1 protein degradation[J]. Eur J Med Chem, 2021, 213:113170. doi: 10.1016/j.ejmech.2021.113170
    [16] Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints[J]. Nat Commun, 2016, 7:10501. doi: 10.1038/ncomms10501
    [17] Fu L, Li S, Xiao W, et al. DGKA mediates resistance to PD-1 blockade[J]. Cancer Immunol Res., 2021, 9(4):371-385. doi: 10.1158/2326-6066.CIR-20-0216
    [18] Kawashima S, Inozume T, Kawazu M, et al. TIGIT/CD155 axis mediates resistance to immunotherapy in patients with melanoma with the inflamed tumor microenvironment[J]. J Immunother Cancer., 2021, 9(11):e003134.
    [19] Zhou X, Zuo C, Li W, et al. A novel d-peptide identified by mirror-image phage display blocks TIGIT/PVR for cancer immunotherapy[J]. Angew Chem Int Ed Engl, 2020, 59(35):15114-15118. doi: 10.1002/anie.202002783
    [20] Zhai W, Zhou X, Wang H, et al. A novel cyclic peptide targeting LAG-3 for cancer immunotherapy by activating antigen-specific CD8(+) T cell responses[J]. Acta Pharm Sin B, 2020, 10(6):1047-1060. doi: 10.1016/j.apsb.2020.01.005
    [21] Wang H, Sun Y, Zhou X, et al. CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2):e000905. doi: 10.1136/jitc-2020-000905
    [22] Hazama D, Yin Y, Murata Y, et al. Macrocyclic peptide-mediated blockade of the CD47-SIRPalpha interaction as a potential cancer immunotherapy[J]. Cell Chem Biol, 2020, 27(9):1181-1191. doi: 10.1016/j.chembiol.2020.06.008
    [23] Taleb M, Atabakhshi-Kashi M, Wang Y, et al. Bifunctional therapeutic peptide assembled nanoparticles exerting improved activities of tumor vessel normalization and immune checkpoint inhibition [J]. Adv Healthc Mater, 2021, 10:e2100051. doi: 10.1007/s00259-021-05672-x
    [24] Jiao L, Dong Q, Zhai W, et al. A PD-L1 and VEGFR2 dual targeted peptide and its combination with irradiation for cancer immunotherapy[J]. Pharmacol Res, 2022, 182:106343. doi: 10.1016/j.phrs.2022.106343
    [25] Wang MD, Lv GT, An HW, et al. In situ self-assembly of bispecific peptide for cancer immunotherapy[J]. Angew Chem Int Ed Engl, 2022, 61(10):e202113649.
    [26] Lv MY, Xiao WY, Zhang YP, et al. In situ self-assembled peptide enables effective cancer immunotherapy by blockage of CD47[J]. Colloids Surf B Biointerfaces, 2022, 217:112655. doi: 10.1016/j.colsurfb.2022.112655
    [27] Zhu X, Wang X, Li B, et al. A three-in-one assembled nanoparticle containing peptide-radio-sensitizer conjugate and TLR7/8 agonist can initiate the cancer-immunity cycle to trigger antitumor immune response[J]. Small, 2022, 18(20):e2107001.
    [28] Zhu X, Li C, Lu Y, et al. Tumor microenvironment-activated therapeutic peptide-conjugated prodrug nanoparticles for enhanced tumor penetration and local T cell activation in the tumor microenvironment[J]. Acta Biomater, 2021, 119:337-348. doi: 10.1016/j.actbio.2020.11.008
    [29] Cheng K, Ding Y, Zhao Y, et al. Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy[J]. Nano Lett, 2018, 18(5):3250-3258. doi: 10.1021/acs.nanolett.8b01071
    [30] Krutzek F, Kopka K, Stadlbauer S. Development of Radiotracers for Imaging of the PD-1/PD-L1 Axis[J]. Pharmaceuticals, 2022, 15(6):747.
    [31] Shaffer T, Natarajan A, Gambhir SS. PET imaging of TIGIT expression on tumor-infiltrating lymphocytes[J]. Clinical Cancer Research, 2021, 27(7):1932-1940. doi: 10.1158/1078-0432.CCR-20-2725
    [32] Lecocq Q, Zeven K, De Vlaeminck Y, et al. Noninvasive Imaging of the Immune Checkpoint LAG-3 Using Nanobodies, from Development to Pre-Clinical Use[J]. Biomolecules, 2019, 9(10):548. doi: 10.3390/biom9100548
    [33] Wei W, Jiang D, Lee HJ, et al. ImmunoPET imaging of TIM-3 in murine melanoma models[J]. Adv Ther (Weinh), 2020, 3(7):2000018.
    [34] Hu K, Wu W, Xie L, et al. Whole-body PET tracking of a D-dodecapeptide and its radiotheranostic potential for PD-L1 overexpressing tumors[J]. Acta Pharm Sin B, 2021, 12(3):1363-1376.
    [35] Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond[J]. J Hematol Oncol, 2021, 14(1):45. doi: 10.1186/s13045-021-01056-8
    [36] Yuan L, Tatineni J, Mahoney KM, et al. VISTA: a mediator of quiescence and a promising target in cancer immunotherapy[J]. Trends Immunol, 2021, 42(3):209-227. doi: 10.1016/j.it.2020.12.008
    [37] Belk J A, Daniel B, Satpathy AT. Epigenetic regulation of T cell exhaustion[J]. Nat Immunol., 2022, 23(6):848-860. doi: 10.1038/s41590-022-01224-z
    [38] Zhang A, Ren Z. Dual targeting of CTLA-4 and CD47 on T(reg) cells promotes immunity against solid tumors[J]. Sci Transl Med, 2021, 13(605):eabg8693. doi: 10.1126/scitranslmed.abg8693
  • 加载中
表(1)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  116
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 录用日期:  2022-12-02
  • 修回日期:  2022-09-26

目录

    /

    返回文章
    返回