邓玥 黄洵

邓玥, 黄洵. 表观遗传抗肿瘤药物的研发进展[J]. 中国肿瘤临床, 2023, 50(6): 278-285. doi: 10.12354/j.issn.1000-8179.2023.20221256
引用本文: 邓玥, 黄洵. 表观遗传抗肿瘤药物的研发进展[J]. 中国肿瘤临床, 2023, 50(6): 278-285. doi: 10.12354/j.issn.1000-8179.2023.20221256
Yue Deng, Xun Huang. Advances in epigenetic anti-tumor drug development[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(6): 278-285. doi: 10.12354/j.issn.1000-8179.2023.20221256
Citation: Yue Deng, Xun Huang. Advances in epigenetic anti-tumor drug development[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(6): 278-285. doi: 10.12354/j.issn.1000-8179.2023.20221256


doi: 10.12354/j.issn.1000-8179.2023.20221256
基金项目: 本文课题受国家自然科学基金优秀青年科学基金项目(编号:21922707)和国家自然科学基金项目(编号:82173835)资助



    黄洵 xhuang@lglab.ac.cn

Advances in epigenetic anti-tumor drug development

Funds: This work was supported by the National Natural Science Foundation of China Youth Fund (No. 21922707) and the National Natural Science Foundation of China (No. 82173835)
More Information
  • 摘要: 表观遗传是指在不改变DNA序列的情况下,基因功能产生可遗传的变异,并最终导致生物表型改变的生物学现象。近年来,随着表观遗传与转录等生物过程间的关系不断被揭示,研究者逐渐认识到表观调控异常也是肿瘤发生的原因之一,这为以表观遗传元件为靶点的抗肿瘤药物的研发奠定了基础。目前,在这类药物研发领域内已有多个化合物获批上市,但其临床应用和药物种类仍存在局限性。本文以表观遗传为出发点,对表观遗传抗肿瘤药物研发热点和进展进行介绍,讨论了以编码器、擦除器和阅读器等表观元件为靶点的抑制剂研究现状和临床应用情况。分析当前表观遗传抗肿瘤药物发展的困境,对未来药物临床应用策略和研发趋势进行展望。


  • 图  1  表观修饰核心酶及其催化功能

    表  1  已上市表观抗肿瘤药物

    EZH2抑制剂他泽司他上皮样肉瘤CPI-1205、SHR2554、PF-06821497、 MAK683
    下载: 导出CSV

    表  2  已进入临床试验阶段的BET抑制剂

    GS-5829Ⅰ/ⅡER+ HER2-乳腺癌、转移性去势抵抗性前列腺癌、实体瘤、淋巴瘤
    下载: 导出CSV
  • [1] Morschhauser F, Tilly H, Chaidos A, et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial[J]. Lancet Oncol, 2020, 21(11):1433-1442. doi: 10.1016/S1470-2045(20)30441-1
    [2] Duns G, Hofstra RM, Sietzema JG, et al. Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development[J]. Hum Mutat, 2012, 33(7):1059-1062.
    [3] Mar BG, Bullinger LB, McLean KM, et al. Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia[J]. Nat Commun, 2014, 5:3469. doi: 10.1038/ncomms4469
    [4] Mar BG, Chu SH, Kahn JD, et al. SETD2 alterations impair DNA damage recognition and lead to resistance to chemotherapy in leukemia[J]. Blood, 2017, 130(24):2631-2641. doi: 10.1182/blood-2017-03-775569
    [5] Lampe JW, Alford JS, Boriak-Sjodin PA, et al. Discovery of a first-in-class inhibitor of the histone methyltransferase SETD2 suitable for preclinical studies[J]. ACS Med Chem Lett, 2021, 12(10):1539-1545.
    [6] Alford JS, Lampe JW, Brach D, et al. Conformational-design-driven discovery of EZM0414: a selective, potent SETD2 inhibitor for clinical studies[J]. ACS Med Chem Lett, 2022, 13(7):1137-1143. doi: 10.1021/acsmedchemlett.2c00167
    [7] Zhao S, Allis CD, Wang GG. The language of chromatin modification in human cancers[J]. Nat Rev Cancer, 2021, 21(7):413-430. doi: 10.1038/s41568-021-00357-x
    [8] Li X, Li XM, Jiang Y, et al. Structure-guided development of YEATS domain inhibitors by targeting π-π-π stacking[J]. Nat Chem Biol, 2018, 14(12):1140-1149. doi: 10.1038/s41589-018-0144-y
    [9] Hsu CC, Shi J, Yuan C, et al. Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A. Z deposition in non-small cell lung cancer[J]. Genes Dev, 2018, 32(1):58-69. doi: 10.1101/gad.303784.117
    [10] Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing[J]. Cell, 2012, 150(6):1107-1120. doi: 10.1016/j.cell.2012.08.029
    [11] Ehrenhöfer-Wölfer K, Puchner T, Schwarz C, et al. SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines[J]. Sci Rep, 2019, 9(1):11661. doi: 10.1038/s41598-019-48152-x
    [12] Kargbo RB. SMARCA2/4 PROTAC for targeted protein degradation and cancer therapy[J]. ACS Med Chem Lett, 2020, 11(10):1797-1798. doi: 10.1021/acsmedchemlett.0c00347
    [13] Xiao L, Parolia A, Qiao Y, et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer[J]. Nature, 2022, 601(7893):434-439. doi: 10.1038/s41586-021-04246-z
    [14] Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery[J]. Cell, 2020, 181(1):102-114. doi: 10.1016/j.cell.2019.11.031
    [15] Bondeson DP, Mares A, Smith IE, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs[J]. Nat Chem Biol, 2015, 11(8):611-617. doi: 10.1038/nchembio.1858
    [16] Burslem GM, Schultz AR, Bondeson DP, et al. Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation[J]. Cancer Res, 2019, 79(18):4744-4753. doi: 10.1158/0008-5472.CAN-19-1236
    [17] Lu J, Qian Y, Altieri M, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4[J]. Chem Biol, 2015, 22(6):755-763. doi: 10.1016/j.chembiol.2015.05.009
    [18] Steinebach C, Lindner S, Udeshi ND, et al. Homo-PROTACs for the chemical knockdown of cereblon[J]. ACS Chem Biol, 2018, 13(9):2771-2782.
    [19] Durbin AD, Wang T, Wimalasena VK, et al. EP300 Selectively controls the enhancer landscape of MYCN-amplified neuroblastoma[J]. Cancer Discov, 2022, 12(3):730-751.
    [20] Wang J, Yu X, Gong W, et al. EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis[J]. Nat Cell Biol, 2022, 24(3):384-399. doi: 10.1038/s41556-022-00850-x
    [21] Brien GL, Remillard D, Shi J, et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma[J]. Elife, 2018, 7:e41305. doi: 10.7554/eLife.41305
    [22] Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours-past lessons and future promise[J]. Nat Rev Clin Oncol, 2020, 17(2):91-107.
    [23] Huang X, Yan J, Zhang M, et al. Targeting Epigenetic Crosstalk as a Therapeutic Strategy for EZH2-Aberrant Solid Tumors[J]. Cell, 2018, 175(1):186-199.
    [24] Gerber DE, Boothman DA, Fattah FJ, et al. Phase 1 study of romidepsin plus erlotinib in advanced non-small cell lung cancer[J]. Lung Cancer, 2015, 90(3):534-541.
    [25] Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18(6):553-567. doi: 10.1016/j.ccr.2010.11.015
    [26] DiNardo CD, Schuh AC, Stein EM, et al. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, phase 1b and randomised, phase 2 trial[J]. Lancet Oncol, 2021, 22(11):1597-1608. doi: 10.1016/S1470-2045(21)00494-0
    [27] Venugopal S, Takahashi K, Daver N, et al. Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy[J]. Blood Cancer J, 2022, 12(1):10.
    [28] Mavrakis KJ, McDonald ER, Schlabach MR, et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5[J]. Science, 2016, 351(6278):1208-1213. doi: 10.1126/science.aad5944
    [29] Smith CR, Aranda R, Bobinski TP, et al. Fragment-based discovery of MRTX1719, a synthetic lethal inhibitor of the PRMT5•MTA complex for the treatment of MTAP-deleted cancers[J]. J Med Chem, 2022, 65(3):1749-1766. doi: 10.1021/acs.jmedchem.1c01900
    [30] Christopher RS, Svitlana K, Lawson JD, et al. Abstract LB003: Fragment based discovery of MRTX9768, a synthetic lethal-based inhibitor designed to bind the PRMT5-MTA complex and selectively target MTAP/CDKN2A-deleted tumors[J]. Cancer Res, 2021, 81(13Supplement):LB003.
    [31] Gibson BA, Doolittle LK, Schneider MWG, et al. Organization of chromatin by intrinsic and regulated phase separation[J]. Cell, 2019, 179(2):470-484. doi: 10.1016/j.cell.2019.08.037
    [32] Boija A, Klein IA, Sabari BR, et al. Transcription factors activate genes through the phase-separation capacity of their activation domains[J]. Cell, 2018, 175(7):1842-1855. doi: 10.1016/j.cell.2018.10.042
    [33] Sabari BR, Dall'Agnese A, Boija A, et al. Coactivator condensation at super-enhancers links phase separation and gene control[J]. Science, 2018, 361(6400):3958. doi: 10.1126/science.aar3958
    [34] Ma L, Gao Z, Wu J, et al. Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics[J]. Mol Cell, 2021, 81(8):1682-1697. doi: 10.1016/j.molcel.2021.01.031
    [35] Hogg SJ, Beavis PA, Dawson MA, et al. Targeting the epigenetic regulation of antitumour immunity[J]. Nat Rev Drug Discov, 2020, 19(11):776-800. doi: 10.1038/s41573-020-0077-5
    [36] Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells[J]. Nature, 2019, 566(7743):270-274. doi: 10.1038/s41586-019-0916-x
    [37] Ptaschinski C, Mukherjee S, Moore ML, et al. RSV-induced H3K4 demethylase KDM5B leads to regulation of dendritic cell-derived innate cytokines and exacerbates pathogenesis in vivo[J]. PLoS Pathog, 2015, 11(6).
    [38] Zhang SM, Cai WL, Liu X, et al. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements[J]. Nature, 2021, 598(7882):682-687. doi: 10.1038/s41586-021-03994-2
    [39] Griffin GK, Wu J, Iracheta-Vellve A, et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity[J]. Nature, 2021, 595(7866):309-314. doi: 10.1038/s41586-021-03520-4
  • 加载中
图(1) / 表(2)
  • 文章访问数:  133
  • HTML全文浏览量:  23
  • PDF下载量:  31
  • 被引次数: 0
  • 收稿日期:  2022-09-02
  • 录用日期:  2022-11-22
  • 修回日期:  2022-10-29