[1]
|
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4):252-264. doi: 10.1038/nrc3239
|
[2]
|
Ackermann S, Cartolano M, Hero B, et al. A mechanistic classification of clinical phenotypes in neuroblastoma[J]. Science, 2018, 362(6419):1165-1170. doi: 10.1126/science.aat6768
|
[3]
|
Rossor T, Khakoo Y, et al. Diagnosis and management of opsoclonus-myoclonus-Ataxia syndrome in children: an international perspective[J]. Neurol Neuroimmunol Neuroinflamm, 2022, 9(3):e1153.
|
[4]
|
Wienke J, Dierselhuis MP, Tytgat GAM, et al. The immune landscape of neuroblastoma: challenges and opportunities for novel therapeutic strategies in pediatric oncology[J]. Eur J Cancer, 2021, 144:123-150. doi: 10.1016/j.ejca.2020.11.014
|
[5]
|
Qiu B, Matthay KK. Advancing therapy for neuroblastoma[J]. Nat Rev Clin Oncol, 2022, 19(8):515-533. doi: 10.1038/s41571-022-00643-z
|
[6]
|
Yu AL, Gilman AL, Ozkaynak MF, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma[J]. N Engl J Med, 2010, 363(14):1324-1334. doi: 10.1056/NEJMoa0911123
|
[7]
|
Ladenstein R, Pötschger U, Valteau-Couanet D, et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial[J]. Lancet Oncol, 2018, 19(12):1617-1629.
|
[8]
|
Codarri Deak L, Nicolini V, Hashimoto M, et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+T cells[J]. Nature, 2022, 610(7930):161-172. doi: 10.1038/s41586-022-05192-0
|
[9]
|
Stagno MJ, Schmidt A, Bochem J, et al. Epitope detection in monocytes (EDIM) for liquid biopsy including identification of GD2 in childhood neuroblastoma-a pilot study[J]. Br J Cancer, 2022, 127(7):1324-1331.
|
[10]
|
Chan GCF, Chan CM. Anti-GD2 directed immunotherapy for high-risk and metastatic neuroblastoma[J]. Biomolecules, 2022, 12(3):358.
|
[11]
|
Zhao B, Li H, Xia Y, et al. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy[J]. J Hematol Oncol, 2022, 15(1):153. doi: 10.1186/s13045-022-01364-7
|
[12]
|
Carpenter EL, Mossé YP. Targeting ALK in neuroblastoma: preclinical and clinical advancements[J]. Nat Rev Clin Oncol, 2012, 9(7):391-399.
|
[13]
|
Weidle UH, Eggle D, Klostermann S. L1-CAM as a target for treatment of cancer with monoclonal antibodies[J]. Anticancer Res, 2009, 29(12):4919-4931.
|
[14]
|
Wachowiak R, Fiegel HC, Kaifi JT, et al. L1 is associated with favorable outcome in neuroblastomas in contrast to adult tumors[J]. Ann Surg Oncol, 2007, 14(12):3575-3580. doi: 10.1245/s10434-007-9608-0
|
[15]
|
Furman WL, McCarville B, Shulkin BL, et al. Improved outcome in children with newly diagnosed high-risk neuroblastoma treated with chemoimmunotherapy: updated results of a phase II study using hu14.18K322A[J]. J Clin Oncol, 2022, 40(4):335-344.
|
[16]
|
Fleurence J, Fougeray S, Bahri M, et al. Targeting O-acetyl-GD2 ganglioside for cancer immunotherapy[J]. J Immunol Res, 2017, 5:5604891.
|
[17]
|
Su YD, Luo BY, Lu Y, et al. Anlotinib induces a T cell-inflamed tumor microenvironment by facilitating vessel normalization and enhances the efficacy of PD-1 checkpoint blockade in neuroblastoma[J]. Clin Cancer Res, 2022, 28(4):793-809.
|
[18]
|
Mody R, Naranjo A, Van Ryn C, et al. Irinotecan-temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an open-label, randomised, phase 2 trial[J]. Lancet Oncol, 2017, 18(7):946-957. doi: 10.1016/S1470-2045(17)30355-8
|
[19]
|
Mody R, Yu AL, Naranjo A, et al. Irinotecan, temozolomide, and dinutuximab with GM-CSF in children with refractory or relapsed neuroblastoma: a report from the children’s oncology group[J]. J Clin Oncol, 2020, 38(19):2160-2169. doi: 10.1200/JCO.20.00203
|
[20]
|
Furman WL, Federico SM, Mccarville MB, et al. A phase Ⅱ trial of hu14.18K322A in combination with induction chemotherapy in children with newly diagnosed high-risk neuroblastoma[J]. Clinical Cancer Research, 2019, 25(21):6320-6328. doi: 10.1158/1078-0432.CCR-19-1452
|
[21]
|
Wang YP, Gao WQ, Shi XY, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661):99-103. doi: 10.1038/nature22393
|
[22]
|
Luo BY, Wang LM, Gao WJ, et al. Using a gene network of pyroptosis to quantify the responses to immunotherapy and prognosis for neuroblastoma patients[J]. Front Immunol, 2022, 13:845757. doi: 10.3389/fimmu.2022.845757
|
[23]
|
Cheung NK, Kushner BH, LaQuaglia M, et al. N7: a novel multi-modality therapy of high risk neuroblastoma (NB) in children diagnosed over 1 year of age[J]. Med Pediatr Oncol, 2001, 36(1):227-230. doi: 10.1002/1096-911X(20010101)36:1<227::AID-MPO1055>3.0.CO;2-U
|
[24]
|
Bailey K, Pandit-Taskar N, Humm JL, et al. Targeted radioimmunotherapy for embryonal tumor with multilayered rosettes[J]. J Neurooncol, 2019, 143(1):101-106. doi: 10.1007/s11060-019-03139-6
|
[25]
|
Toews K, Grunewald L, Schwiebert S, et al. Central memory phenotype drives success of checkpoint inhibition in combination with CAR T cells[J]. Mol Carcinog, 2020, 59(7):724-735. doi: 10.1002/mc.23202
|
[26]
|
Chen YH, Sun C, Landoni E, et al. Eradication of neuroblastoma by T cells redirected with an optimized GD2-specific chimeric antigen receptor and interleukin-15[J]. Clin Cancer Res, 2019, 25(9):2915-2924. doi: 10.1158/1078-0432.CCR-18-1811
|
[27]
|
Moghimi B, Muthugounder S, Jambon S, et al. Preclinical assessment of the efficacy and specificity of GD2-B7H3 SynNotch CAR-T in metastatic neuroblastoma[J]. Nat Commun, 2021, 12(1):511. doi: 10.1038/s41467-020-20785-x
|
[28]
|
Tian M, Cheuk AT, Wei JS, et al. An optimized bicistronic chimeric antigen receptor against GPC2 or CD276 overcomes heterogeneous expression in neuroblastoma[J]. J Clin Invest, 2022, 132(16):e155621.
|
[29]
|
Castriconi R, Dondero A, Cilli M, et al. Human NK cell infusions prolong survival of metastatic human neuroblastoma-bearing NOD/scid mice[J]. Cancer Immunol Immunother, 2007, 56(11):1733-1742.
|
[30]
|
Liu Y, Wu HW, Sheard MA, et al. Growth and activation of natural killer cells Ex vivo from children with neuroblastoma for adoptive cell therapy[J]. Clin Cancer Res, 2013, 19(8):2132-2143. doi: 10.1158/1078-0432.CCR-12-1243
|
[31]
|
Nguyen R, Sahr N, Sykes A, et al. Longitudinal NK cell kinetics and cytotoxicity in children with neuroblastoma enrolled in a clinical phase II trial[J]. J Immunother Cancer, 2020, 8(1):e000176. doi: 10.1136/jitc-2019-000176
|
[32]
|
Metelitsa LS. Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans[J]. Clin Immunol, 2011, 140(2):119-129. doi: 10.1016/j.clim.2010.10.005
|
[33]
|
Heczey A, Liu DF, Tian GW, et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy[J]. Blood, 2014, 124(18):2824-2833. doi: 10.1182/blood-2013-11-541235
|
[34]
|
Croce M, Meazza R, Orengo AM, et al. Immunotherapy of neuroblastoma by an Interleukin-21-secreting cell vaccine involves survivin as antigen[J]. Cancer Immunol Immunother, 2008, 57(11):1625-1634.
|
[35]
|
Temizoz B, Kuroda E, Ishii KJ. Vaccine adjuvants as potential cancer immunotherapeutics[J]. Int Immunol, 2016, 28(7):329-338. doi: 10.1093/intimm/dxw015
|