Research progress of tumor infiltrating lymphocytes in predicting the efficacy of neoadjuvant chemotherapy for triple negative breast cancer
-
摘要: 三阴性乳腺癌(triple negative breast cancer,TNBC)是一种具有高度侵袭性特征的乳腺癌,总体预后不良。肿瘤浸润淋巴细胞(tumor infiltrating lymphocytes,TILs)在肿瘤微环境 (tumor microenvironment,TME)中发挥重要作用,可通过细胞免疫调节作用起到对肿瘤细胞增进或抑制。新辅助化疗(neoadjuvant chemotherapy,NAC)是TNBC常见的且有效的治疗手段,其可以通过缩小原发肿瘤达到降期保乳、保腋窝或使“不可手术乳腺癌”转变为“可手术乳腺癌”,为患者治疗提供更多可选的临床思路。目前,TNBC的NAC疗效及预后的预测价值是临床研究的重点和难点,肿瘤浸润淋巴细胞作为重要的生物免疫标志物,在这方面具有较为重要的意义。本文将对TILs在TNBC的NAC疗效及预后方面的预测价值进行综述。Abstract: Triple negative breast cancer (TNBC) is a type of breast cancer characterized by highly aggressive features and poor overall prognosis. Tumor infiltrating lymphocytes (TILs) play an important role in the tumor microenvironment (TME) and can promote or inhibit tumor cells through the regulation of cellular immunity. Neoadjuvant chemotherapy (NAC) is a common and effective treatment for TNBC that can shrink the primary tumor to downstage advanced breast cancer, achieve axillary conservation, or transform "inoperable breast cancer" into "operable breast cancer", thereby providing patients with a wider range of treatment options. Currently, the predictive value of efficacy and prognosis of neoadjuvant chemotherapy in TNBC is not only the focus but also poses a dilemma in this area of clinical research. In this regard, TILs, as an important cancer biomarker, are of great significance. In this paper, we will review and analyze the predictive value of TILs in the efficacy and prognosis of NAC for TNBC.
-
图 1 肿瘤浸润淋巴细胞分类及作用[12]
表 1 TILs与TNBC的NAC相关文献汇总
年份(年) 文献 乳腺癌
类型患者例数(例) TILs种类 pCR OS DFS 2010 Denkert等[23] Luminal/
HER-2/TNBC1 058 CD3D、
CXCL942%(训练队列, n=218);
40%(验证队列,n=840)— — 2011 Ono等[24] TNBC 180 TILs 32%(TILs高表达 ) ;16%(TILs低表达) — 2014 Adams等[25] TNBC 481 sTILs — 10.6年70.5% — 2018 Denkert等[26] TNBC 906 TILs 低TILs30%为80例(n=260);中间TILs31%为117例(n=373);高TILs50%为136例(n=273) 3年99% 达到pCR5年的DFS为93% 未达到pCR5年的DFS为66% 2019 Luen等[27] TNBC 375 CD8+T细胞 — RCBⅡ3年OS率为70%; RCBⅢ3年OS率为32% 3年RFS(RCBⅠ为86%,RCBⅡ为67%,RCBⅢ为26%) 2020 Bai等[28] TNBC 74 CD4+、CD8+、CD20+、CD68+T细胞 32.4%为24例 5年OS率为86.3% 5年DFS率为81.0% 2020 Lee等[29] TNBC 232 TILs 30.8%±24.9% — — -
[1] Kashyap D, Pal D, Sharma R, et al. Global increase in breast cancer incidence: risk factors and preventive measures[J]. Biomed Res Int, 2022, 20(22):685-688. [2] Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. Cancer J Clin, 20, 73(1):17-48. [3] Pandy JG, Balolong-Garcia JC, Cruz-Ordinario MV, et al. Triple negative breast cancer and platinum-based systemic treatment: a meta-analysis and systematic review[J]. BMC Cancer, 2019, 19(1):1065. doi: 10.1186/s12885-019-6253-5 [4] Choi H, Kim K. Theranostics for triple-negative breast cancer[J]. Diagnostics, 2023, 13(2):272. doi: 10.3390/diagnostics13020272 [5] Paluskievicz CM, Cao XF, Abdi R, et al. T regulatory cells and priming the suppressive tumor microenvironment[J]. Front Immunol, 2019, 10:2453. doi: 10.3389/fimmu.2019.02453 [6] Jiang YZ, Ma D, Suo C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies[J]. Cancer Cell, 2019, 35(3):428-440. doi: 10.1016/j.ccell.2019.02.001 [7] Yates LR, Campbell PJ. Evolution of the cancer genome[J]. Nat Rev Genet, 2012, 13(11):795-806. doi: 10.1038/nrg3317 [8] Matsushita H, Vesely MD, Koboldt DC, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting[J]. Nature, 2012, 482(7385):400-404. doi: 10.1038/nature10755 [9] Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences[J]. Immunity, 2019, 51(1):27-41. doi: 10.1016/j.immuni.2019.06.025 [10] Mao XQ, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021, 20(1):131. doi: 10.1186/s12943-021-01428-1 [11] Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19(11):1423-1437. doi: 10.1038/nm.3394 [12] Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014[J]. Ann Oncol, 2015, 26(2):259-271. doi: 10.1093/annonc/mdu450 [13] Barua S, Fang P, Sharma A, et al. Spatial interaction of tumor cells and regulatory T cells correlates with survival in non-small cell lung cancer[J]. Lung Cancer, 2018, 117:73-79. doi: 10.1016/j.lungcan.2018.01.022 [14] Gu-Trantien C, Loi S, Garaud S, et al. CD4⁺ follicular helper T cell infiltration predicts breast cancer survival[J]. J Clin Inv, 2013, 123(7):2873-2892. doi: 10.1172/JCI67428 [15] Mahmoud K, Daniel G, Patrick S, et al. Association of pathological complete response rates and TILs in triple-negative breast cancer patients[J]. J Clin Oncol, 2021, 39(15 Suppl):e12596. [16] Hayashi K, Nogawa D, Kobayashi M, et al. Quantitative high-throughput analysis of tumor infiltrating lymphocytes in breast cancer[J]. Front Oncol, 2022, 12:901591. doi: 10.3389/fonc.2022.901591 [17] Denkert C, Wienert S, Poterie A, et al. Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: results of the ring studies of the international immuno-oncology biomarker working group[J]. Mod Pathol, 2016, 29(10):1155-1164. doi: 10.1038/modpathol.2016.109 [18] Cortazar P, Zhang LJ, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938):164-172. doi: 10.1016/S0140-6736(13)62422-8 [19] Shepherd JH, Ballman K, PolleyMC, et al. CALGB 40603 (alliance): long-term outcomes and genomic correlates of response and survival after neoadjuvant chemotherapy with or without carboplatin and bevacizumab in triple-negative breast cancer[J]. J Clin Oncol, 2022, 40(12):1323-1334. doi: 10.1200/JCO.21.01506 [20] Hiten N, Gelmon KA, Lovedeep G, et al. Real-world outcomes of neoadjuvant treatment for HER2 positive early-stage breast cancer[J]. J Clin Oncol, 2021, 39(15_Suppl):e18791. doi: 10.1200/JCO.2021.39.15_suppl.e18791 [21] Romeo V, Accardo G, Perillo T, et al. Assessment and prediction of response to neoadjuvant chemotherapy in breast cancer: acomparison of imaging modalities and future perspectives[J]. Cancers (Basel), 2021, 13(14):3521. doi: 10.3390/cancers13143521 [22] 路红,季宇,张迎,等.多参数磁共振成像在乳腺癌新辅助化疗中的应用研究进展[J].中国肿瘤临床,2021,48(20):1056-1060. [23] Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer[J]. J Clin Oncol, 2009, 28(1):105-113. [24] Ono M, Tsuda H, Shimizu C, et al. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer[J]. Breast Cancer Res Treat, 2012, 132(3):793-805. doi: 10.1007/s10549-011-1554-7 [25] Adams S, Gray RJ, Demaria S, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase Ⅲ randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199[J]. J Clin Oncol, 2014, 32(27):2959-2966. doi: 10.1200/JCO.2013.55.0491 [26] Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy[J]. Lancet Oncol, 2018, 19(1):40-50. doi: 10.1016/S1470-2045(17)30904-X [27] Luen SJ, Salgado R, Dieci MV, et al. Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy[J]. Ann Oncol, 2019, 30(2):236-242. doi: 10.1093/annonc/mdy547 [28] Bai YG, Gao GX, Zhang H, et al. Prognostic value of tumor-infiltrating lymphocyte subtypes in residual tumors of patients with triple-negative breast cancer after neoadjuvant chemotherapy[J]. Chin Med J (Engl), 2020, 133(5):552-560. doi: 10.1097/CM9.0000000000000656 [29] Lee H, Lee M, Seo JH, et al. Changes in tumor-infiltrating lymphocytes after neoadjuvant chemotherapy and clinical significance in triple negative breast cancer[J]. Anticancer Res, 2020, 40(4):1883-1890. doi: 10.21873/anticanres.14142 [30] Walsh E, Shalaby A. The role of stromal tumor infiltrating lymphocytes (sTILs) as a predictive biomarker for carboplatin-based neoadjuvant chemotherapy (NACT) in triple-negative breast cancer (TNBC)[J]. J Clin Oncol, 2019, 37(15_Suppl):e12085. doi: 10.1200/JCO.2019.37.15_suppl.e12085 [31] de Boo L, Cimino-Mathews A, Lubeck Y, et al. Tumour-infiltrating lymphocytes (TILs) and BRCA-like status in stage III breast cancer patients randomised to adjuvant intensified platinum-based chemotherapy versus conventional chemotherapy[J]. Eur J Cancer, 2020, 127:240-250. doi: 10.1016/j.ejca.2019.12.003 [32] Paijens ST, Vledder A, Bruyn MD, et al. Tumor-infiltrating lymphocytes in the immunotherapy era[J]. Cell Mole Immunol, 2020, 18(4):18-20. [33] Xu XJ, Yi C, Feng TY, et al. Regulating tumor microenvironments by a lymph node-targeting adjuvant via tumor-specific CTL-derived IFNγ[J]. Clin Oncol, 2023, 253:109685. [34] Kim Y, Shin Y, Kang GH. Prognostic significance of CD103+ immune cells in solid tumor: a systemic review and meta-analysis[J]. Sci Rep, 2019, 9(1):1-7. doi: 10.1038/s41598-018-37186-2 [35] Solomon B, YoungRJ, Bressel M, et al. Identification of an excellent prognosis subset of human papillomavirus-associated oropharyngeal cancer patients by quantification of intratumoral CD103+ immune cell abundance[J]. Ann Oncol, 2019, 30(10):1638-1646. doi: 10.1093/annonc/mdz271 [36] Zhang Z, Chen XF, Tian YG, et al. Point mutation in CD19 facilitates immune escape of B cell lymphoma from CAR-T cell therapy[J]. J Immunother Cancer, 2020, 8(2):e001150. doi: 10.1136/jitc-2020-001150 [37] Kroeger DR, Katy M, Nelson BH. Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer[J]. Clin Cancer Res of J Am Assoc Cancer Res, 2016, 22(12):3005-3015. doi: 10.1158/1078-0432.CCR-15-2762 [38] 梁锐,李蕾蕾,王志强.肿瘤浸润性淋巴细胞在实体瘤的临床研究进展[J].中国肿瘤临床,2021,48(22):1168-1172. -