近红外光免疫治疗在乳腺癌治疗中的研究进展

董佳琳 荆慧

董佳琳, 荆慧. 近红外光免疫治疗在乳腺癌治疗中的研究进展[J]. 中国肿瘤临床, 2023, 50(22): 1164-1167. doi: 10.12354/j.issn.1000-8179.2023.20230902
引用本文: 董佳琳, 荆慧. 近红外光免疫治疗在乳腺癌治疗中的研究进展[J]. 中国肿瘤临床, 2023, 50(22): 1164-1167. doi: 10.12354/j.issn.1000-8179.2023.20230902
Jialin Dong, Hui Jing. Research progress on near-infrared photoimmunotherapy for breast cancer treatment[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(22): 1164-1167. doi: 10.12354/j.issn.1000-8179.2023.20230902
Citation: Jialin Dong, Hui Jing. Research progress on near-infrared photoimmunotherapy for breast cancer treatment[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 50(22): 1164-1167. doi: 10.12354/j.issn.1000-8179.2023.20230902

近红外光免疫治疗在乳腺癌治疗中的研究进展

doi: 10.12354/j.issn.1000-8179.2023.20230902
详细信息
    作者简介:

    董佳琳:专业方向为乳腺癌的超声检查及基础研究

    通讯作者:

    荆慧 jinghuihrb@163.com

Research progress on near-infrared photoimmunotherapy for breast cancer treatment

More Information
  • 摘要: 在乳腺癌治疗过程中,内科治疗导致的耐药和手术造成的非必要创伤等问题较为常见,为此临床上一直致力于寻找一种具有精准性并且伤害较小的治疗手段。由于乳腺癌的难治性和多样性,针对不同种类的乳腺癌发现疗效显著的靶点,研究如何应用靶向治疗具有重要意义。近红外光免疫治疗(near-infrared photoimmunotherapy,NIR-PIT)可在近红外光的照射下,靶向性杀灭癌细胞并诱导人体产生持久的免疫反应,影响肿瘤的进展、转移和侵袭等生理过程。为乳腺癌靶向治疗提供进一步的参考,本文将对NIR-PIT的作用机制和特性及治疗乳腺癌的常见靶点进行综述。

     

  • 表  1  乳腺癌靶向治疗的分子靶点

    分类   靶点常用药物   相关肿瘤发展进程细胞系
    临床前研究[16-17,19,21,23]EGFR西妥昔单抗细胞增殖、凋亡MDA-MB-231
    EGFR帕尼单抗细胞增殖、凋亡MDA-MB-468,BT-20,MDA-MB-453
    HER-2曲妥珠单抗细胞增殖、凋亡SK-BR3, MDA-MB-361, MCF-7,MDA-MB-231
    ICAM-1ICAM-1抗体细胞黏附、转移MDA-MB-468-luc, MDA-MB-231
    CD44CD44抗体CSC标志物MDA-MB-231, BT-474
    PD-1/PD-L1阿维鲁单抗免疫逃逸4T1
    CD206CD206抗体M2巨噬细胞标志物4T1
    潜在分子靶点CTLA-4伊匹单抗T细胞活化
    Trop-2戈沙妥珠单抗细胞增殖、迁移、
    FGFR贝玛妥珠单抗细胞增殖、分化、迁移、凋亡
     VEGF贝伐珠单抗内皮细胞凋亡、血管生成
    下载: 导出CSV
  • [1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1):7-30. doi: 10.3322/caac.21332
    [2] Paluch-Shimon S, Cardoso F, Partridge AH, et al. ESO-ESMO fifth international consensus guidelines for breast cancer in young women (BCY5)[J]. Ann Oncol, 2022, 33(11):1097-1118. doi: 10.1016/j.annonc.2022.07.007
    [3] Li F, Mao CQ, Yeh S, et al. Combinatory therapy of MRP1-targeted photoimmunotherapy and liposomal doxorubicin promotes the antitumor effect for chemoresistant small cell lung cancer[J]. Int J Pharm, 2022, 625:122076. doi: 10.1016/j.ijpharm.2022.122076
    [4] Kong C, Xu B, Qiu G, et al. Multifunctional nanoparticles-mediated PTT/PDT synergistic immune activation and antitumor activity combined with anti-PD-L1 immunotherapy for breast cancer treatment[J]. Int J Nanomedicine, 2022, 17:5391-5411. doi: 10.2147/IJN.S373282
    [5] Takao S, Fukushima H, King AP, et al. Near-infrared photoimmunotherapy in the models of hepatocellular carcinomas using cetuximab-IR700[J]. Cancer Sci, 2023,114(12)4654-4663.
    [6] Yamada M, Matsuoka K, Sato M, et al. Recent advances in localized immunomodulation technology: application of NIR-PIT toward clinical control of the local immune system[J]. Pharmaceutics, 2023, 15(2):561. doi: 10.3390/pharmaceutics15020561
    [7] Wakiyama H, Kato T, Furusawa A, et al. Near infrared photoimmunotherapy of cancer; possible clinical applications[J]. Nanophotonics, 2021, 10(12):3135-3151. doi: 10.1515/nanoph-2021-0119
    [8] Moriya T, Hashimoto M, Matsushita H, et al. Near-infrared photoimmunotherapy induced tumor cell death enhances tumor dendritic cell migration[J]. Cancer Immunol Immunother, 2022, 71(12):3099-3106. doi: 10.1007/s00262-022-03216-2
    [9] Matsuoka K, Yamada M, Fukatsu N, et al. Contrast-enhanced ultrasound imaging for monitoring the efficacy of near-infrared photoimmunotherapy[J]. eBio Medicine, 2023, 95:104737.
    [10] Mok CW, Lai HW. Endoscopic-assisted surgery in the management of breast cancer: 20 years review of trend, techniques and outcomes[J]. Breast, 2019, 46:144-156. doi: 10.1016/j.breast.2019.05.013
    [11] Hirata H, Kuwatani M, Nakajima K, et al. Near-infrared photoimmunotherapy (NIR-PIT) on cholangiocarcinoma using a novel catheter device with light emitting diodes[J]. Cancer Sci, 2021, 112(2):828-838. doi: 10.1111/cas.14780
    [12] Mlees MA, El-Sherpiny WY, Moussa HR. Transaxillary endoscopic excision of benign breast tumors, early institution experience[J]. Breast J, 2020, 26(4):672-678. doi: 10.1111/tbj.13498
    [13] Mohiuddin TM, Zhang C, Sheng W, et al. Near infrared photoimmunotherapy: a review of recent progress and their target molecules for cancer therapy[J]. Int J Mol Sci, 2023, 24(3):2655. doi: 10.3390/ijms24032655
    [14] Cilibrasi C, Papanastasopoulos P, Samuels M, et al. Reconstituting immune surveillance in breast cancer: molecular pathophysiology and current immunotherapy strategies[J]. Int J Mol Sci, 2021, 22(21):12015. doi: 10.3390/ijms222112015
    [15] Li XY, Zhao LN, Chen CS, et al. Can EGFR be a therapeutic target in breast cancer[J]? Biochim Biophys Acta BBA Rev Cancer, 2022, 1877(5):188789.
    [16] Nagaya T, Sato K, Harada T, et al. Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: optimizing the conjugate-light regimen[J]. PLoS One, 2015, 10(8):e0136829. doi: 10.1371/journal.pone.0136829
    [17] Yamaguchi H, Pantarat N, Suzuki T, et al. Near-infrared photoimmunotherapy using a small protein mimetic for HER2-overexpressing breast cancer[J]. Int J Mol Sci, 2019, 20(23):5835. doi: 10.3390/ijms20235835
    [18] Zhou Q, Xu J, Xu Y, et al. Role of ICAM1 in tumor immunity and prognosis of triple-negative breast cancer[J]. Front Immunol, 2023, 14:1176647. doi: 10.3389/fimmu.2023.1176647
    [19] Fukushima H, Kato T, Furusawa A, et al. Intercellular adhesion molecule-1-targeted near-infrared photoimmunotherapy of triple-negative breast cancer[J]. Cancer Sci, 2022, 113(9):3180-3192. doi: 10.1111/cas.15466
    [20] Manupati K, Yeeravalli R, Kaushik K, et al. Activation of CD44-lipoprotein lipase axis in breast cancer stem cells promotes tumorigenesis[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(11):166228. doi: 10.1016/j.bbadis.2021.166228
    [21] Shirasu N, Shibaguchi H, Yamada H, et al. Highly versatile cancer photoimmunotherapy using photosensitizer-conjugated avidin and biotin-conjugated targeting antibodies[J]. Cancer Cell Int, 2019, 19:299. doi: 10.1186/s12935-019-1034-4
    [22] Sun YN, Lyu BC, Yang C, et al. An enzyme-responsive and transformable PD-L1 blocking peptide-photosensitizer conjugate enables efficient photothermal immunotherapy for breast cancer[J]. Bioact Mater, 2023, 22:47-59.
    [23] Nagaya T, Nakamura Y, Sato K, et al. Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody[J]. Oncotarget, 2017, 8(5):8807-8817. doi: 10.18632/oncotarget.12410
    [24] Li D, Chen F, Cheng C, et al. Biodegradable materials with disulfide-bridged-framework confine photosensitizers for enhanced photo-immunotherapy[J]. Int J Nanomedicine, 2021, 16:8323-8334. doi: 10.2147/IJN.S344679
    [25] de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3):374-403. doi: 10.1016/j.ccell.2023.02.016
    [26] Emami F, Pathak S, Nguyen TT, et al. Photoimmunotherapy with cetuximab-conjugated gold nanorods reduces drug resistance in triple negative breast cancer spheroids with enhanced infiltration of tumor-associated macrophages[J]. J Control Release, 2021, 329:645-664. doi: 10.1016/j.jconrel.2020.10.001
  • 加载中
表(1)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  13
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 录用日期:  2023-12-08
  • 修回日期:  2023-11-20

目录

    /

    返回文章
    返回