肿瘤异质性-精准临床诊治的挑战

白日兰 崔久嵬

白日兰, 崔久嵬. 肿瘤异质性-精准临床诊治的挑战[J]. 中国肿瘤临床, 2020, 47(21): 1081-1087. doi: 10.3969/j.issn.1000-8179.2020.21.341
引用本文: 白日兰, 崔久嵬. 肿瘤异质性-精准临床诊治的挑战[J]. 中国肿瘤临床, 2020, 47(21): 1081-1087. doi: 10.3969/j.issn.1000-8179.2020.21.341
BAI Rilan, Cui Jiuwei. Tumor heterogeneity: the great challenge in precision clinical diagnosis and treatment[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(21): 1081-1087. doi: 10.3969/j.issn.1000-8179.2020.21.341
Citation: BAI Rilan, Cui Jiuwei. Tumor heterogeneity: the great challenge in precision clinical diagnosis and treatment[J]. CHINESE JOURNAL OF CLINICAL ONCOLOGY, 2020, 47(21): 1081-1087. doi: 10.3969/j.issn.1000-8179.2020.21.341

肿瘤异质性-精准临床诊治的挑战

doi: 10.3969/j.issn.1000-8179.2020.21.341
基金项目: 

本文课题受国家重点研发项目 2016YFC1303804

吉林省科技厅科技发展计划项目 20190303146SF

详细信息
    作者简介:

    白日兰, 专业方向为肿瘤综合诊治及基础研究。E-mail:bairilan@foxmail.com

    崔久嵬 教授,博士生导师,现任吉林大学第一医院肿瘤中心副主任,肿瘤科主任,吉林省生物治疗重点实验室负责人。兼任中国抗癌协会青年理事会副理事长、中国研究型医院生物治疗委员会副主任委员、中国研究型医院分子诊断委员会副主任委员、中国医药质量管理协会细胞治疗质量控制与研究专业委员会常委、中华医学生物免疫学会常务委员、中国抗癌协会营养与支持委员会肿瘤免疫营养学组组长、中国抗癌协会肿瘤营养专业委员会常委、中国抗癌协会肿瘤科普防治专业委员会常委、中国临床肿瘤学会理事、国家抗肿瘤药物临床应用监测专家委员会委员、中华医学会肿瘤学分会第十一届肺癌专家委员会委员等。主要研究方向为肿瘤发病机制及免疫治疗研究。负责及参与32项国家、省部级课题。曾获2020年吉林省自然科学奖一等奖,2018年吉林省青年科技奖特别奖 1项,中国分析测试协会科学技术奖二等奖 1项,吉林省科学技术成果一等奖1项,二等奖3项;获吉林省突出贡献中青年专业技术人才、吉林省卫生系统第二次拔尖创新人才、白求恩名师、吉林省高校双百人才和长春市百名优秀科技工作者称号

    通讯作者:

    崔久嵬, E-mail:cuijw@jlu.edu.cn

Tumor heterogeneity: the great challenge in precision clinical diagnosis and treatment

Funds: 

the National Key Research and Development Program of China 2016YFC1303804

the Science and Technology Development Project of Science and Technology of Jilin Province 20190303146SF

More Information
  • 摘要: 肿瘤异质性是肿瘤演化过程中出现的一个普遍而又至关重要的表现特征,是肿瘤形成及进一步演进的重要支撑点。尽管近几年,肿瘤异质性内在规律和形成机制等方面的研究有诸多新进展,但肿瘤异质性仍是实现临床精准诊治、克服耐药问题的重大挑战。近几年,随着高通量测序和单细胞测序技术的发展和不断完善,对肿瘤单个细胞或全基因组测序已逐步揭示肿瘤异质性的时空变异和分子机制。本篇文章对肿瘤异质性的复杂性、形成机制和对肿瘤演进的影响以及对临床诊治带来的挑战的最新研究进展进行综述。

     

  • 图  1  肿瘤异质性的组成及影响

  • [1] McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future[J]. Cell, 2017, 168(4):613-628. doi: 10.1016/j.cell.2017.01.018
    [2] Morganti S, Tarantino P, Ferraro E, et al. Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life[J]. Crit Rev Oncol Hematol, 2019, 133:171-182. doi: 10.1016/j.critrevonc.2018.11.008
    [3] Davis-Marcisak EF, Sherman TD, Orugunta P, et al. Differential variation analysis enables detection of tumor heterogeneity using single- cell rna- sequencing data[J]. Cancer Res, 2019, 79(19):5102- 5112. doi: 10.1158/0008-5472.CAN-18-3882
    [4] Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies[J]. Nat Rev Clin Oncol, 2018, 15(2):81-94. doi: 10.1038/nrclinonc.2017.166
    [5] Jerby L, Wolf L, Denkert C, et al. Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer[J]. Cancer Res, 2012, 72(22):5712-5720. doi: 10.1158/0008-5472.CAN-12-2215
    [6] Aktipis CA, Boddy AM, Gatenby RA, et al. Life history trade-offs in cancer evolution[J]. Nat Rev Cancer, 2013, 13(12):883-892. doi: 10.1038/nrc3606
    [7] Graf JF, Zavodszky MI. Characterizing the heterogeneity of tumor tissues from spatially resolved molecular measures[J]. PLoS One, 2017, 12(11):e0188878. doi: 10.1371/journal.pone.0188878
    [8] Inda MM, Bonavia R, Mukasa A, et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma[J]. Genes Dev, 2010, 24(16):1731-1745. doi: 10.1101/gad.1890510
    [9] Hobor S, Van Emburgh BO, Crowley E, et al. TGF and amphiregulin paracrine network promotes resistance to EGFR blockade in colorectal cancer cells[J]. Clin Cancer Res, 2014, 20(24):6429-6438. doi: 10.1158/1078-0432.CCR-14-0774
    [10] Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective[J]. Mol Cancer, 2017, 16(1):41. doi: 10.1186/s12943-017-0600-4
    [11] Zheng H, Pomyen Y, Hernandez MO, et al. Single- cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma[J]. Hepatology, 2018, 68(1):127-140. doi: 10.1002/hep.29778
    [12] Das PK, Pillai S, Rakib MA, et al. Plasticity of cancer stem cell: origin and role in disease progression and therapy resistance[J]. Stem Cell Rev Rep, 2020, 16(2):397-412. doi: 10.1007/s12015-019-09942-y
    [13] Ma B, Cheng H, Mu C, et al. The SIAH2-NRF1 axis spatially regulates tumor microenvironment remodeling for tumor progression[J]. Nat Commun, 2019, 10(1):1034. doi: 10.1038/s41467-019-08618-y
    [14] Hausser J, Alon U. Tumour heterogeneity and the evolutionary trade-offs of cancer[J]. Nat Rev Cancer, 2020, 20(4):247-257. doi: 10.1038/s41568-020-0241-6
    [15] Carmona-Fontaine C, Deforet M. Metabolic origins of spatial organization in the tumor microenvironment[J]. Proc Natl Acad Sci U S A, 2017, 114(11):2934-2939. doi: 10.1073/pnas.1700600114
    [16] Dewhirst MW, Secomb TW. Transport of drugs from blood vessels to tumour tissue[J]. Nat Rev Cancer, 2017, 17(12):738-750. doi: 10.1038/nrc.2017.93
    [17] Losic B, Craig AJ, Villacorta-Martin C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer[J].Nat Commun, 2020, 11(1): 291. doi: 10.1038/s41467-019-14050-z
    [18] Ellsworth DL, Blackburn HL, Shriver CD, et al. Single-cell sequencing and tumorigenesis: improved understanding of tumor evolution and metastasis[J]. Clin Transl Med, 2017, 6(1):15. http://pubmedcentralcanada.ca/pmcc/articles/PMC5389955/
    [19] Levitin HM, Yuan J, Sims PA. Single-cell transcriptomic analysis of tumor heterogeneity[J]. Trends Cancer, 2018, 4(4):264-268. doi: 10.1016/j.trecan.2018.02.003
    [20] Bakhoum SF, Landau DA. Chromosomal Instability as a Driver of Tumor Heterogeneity and Evolution[J]. Cold Spring Harb Perspect Med, 2017, 7(6):a029611. doi: 10.1101/cshperspect.a029611
    [21] Andor N, Maley CC, Ji HP. Genomic Instability in Cancer: Teetering on the Limit of Tolerance[J]. Cancer Res, 2017, 77(9):2179-2185. doi: 10.1158/0008-5472.CAN-16-1553
    [22] Tamura K, Kaneda M, Futagawa M, et al. Genetic and genomic basis of the mismatch repair system involved in Lynch syndrome[J]. Int J Clin Oncol, 2019, 24(9):999-1011. doi: 10.1007/s10147-019-01494-y
    [23] Javid M, Sasanakietkul T, Nicolson NG, et al. DNA mismatch repair deficiency promotes genomic instability in a subset of papillary thyroid cancers[J]. World J Surg, 2018, 42(2):358-366. doi: 10.1007/s00268-017-4299-6
    [24] de Bruin EC, McGranahan N, Mitter R, et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution[J]. Science, 2014, 346(6206):251-256. doi: 10.1126/science.1253462
    [25] Chen L, Qiu X, Zhang N, et al. APOBEC-mediated genomic alterations link immunity and viral infection during human papillomavirus- driven cervical carcinogenesis[J]. Biosci Trends, 2017, 11(4): 383-388. doi: 10.5582/bst.2017.01103
    [26] Swanton C, Mcgranahan N, Starrett GJ, et al. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity[J]. Cancer Discovery, 2015, 5(7):704-712. doi: 10.1158/2159-8290.CD-15-0344
    [27] Hinohara K, Polyak K. Intratumoral heterogeneity: more than just mutations[J]. Trends Cell Biol, 2019, 29(7):569-579. doi: 10.1016/j.tcb.2019.03.003
    [28] Assenov Y, Brocks D, Gerhauser C. Intratumor heterogeneity in epigenetic patterns[J]. Semin Cancer Biol, 2018, 51:12-21. doi: 10.1016/j.semcancer.2018.01.010
    [29] Quek K, Li J, Estecio M, et al. DNA methylation intratumor heterogeneity in localized lung adenocarcinomas[J]. Oncotarget, 2017, 8 (13):21994. doi: 10.18632/oncotarget.15777
    [30] Marzese DM, Scolyer RA, Maria R, et al. DNA methylation and gene deletion analysis of brain metastases in melanoma patients identifies mutually exclusive molecular alterations[J]. Neuro- Oncology, 2014, 16(11):1499-509. doi: 10.1093/neuonc/nou107
    [31] Hiley C, Bruin ECD, Mcgranahan N, et al. Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine[J]. Genome Biol, 2014, 27, 15(8):453. doi: 10.1186/s13059-014-0453-8
    [32] Gerlinger M, Horswell S, Larkin J, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing[J]. Nat Genet, 2014, 46(3):225-233. doi: 10.1038/ng.2891
    [33] Mcgranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution[J]. Cancer Cell, 28(1): 141. doi: 10.1016/j.ccell.2015.06.007
    [34] Sun R, Hu Z, Curtis C. Big bang tumor growth and clonal evolution[J]. Cold Spring Harb Perspect Med, 2018, 8(5):a028381. doi: 10.1101/cshperspect.a028381
    [35] Davis A, Gao R, Navin N. Tumor evolution: Linear, branching, neutral or punctuated?[J]. Biochim Biophys Acta Rev Cancer, 2017, 1867(2):151-161 doi: 10.1016/j.bbcan.2017.01.003
    [36] Marcozzi A, Pellestor F, Kloosterman WP. The genomic characteristics and origin of chromothripsis[J]. Methods Mol Biol, 2018, 1769: 3-19. http://europepmc.org/abstract/MED/29564814
    [37] Yachida S, Iacobuzio-Donahue CA. Evolution and dynamics of pancreatic cancer progression[J]. Oncogene, 2013, 32(45):5253-5260 doi: 10.1038/onc.2013.29
    [38] Batlle E, Clevers H. Cancer stem cells revisited[J]. Nat Med, 2017, 23(10):1124-1134. doi: 10.1038/nm.4409
    [39] O'Brien-Ball C, Biddle A. Reprogramming to developmental plasticity in cancer stem cells[J]. Dev Biol, 2017, 430(2):266-274. doi: 10.1016/j.ydbio.2017.07.025
    [40] Lloyd MC, Cunningham JJ, Bui MM, et al. Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces[J]. Cancer Res, 2016, 76 (11):3136-3144. doi: 10.1158/0008-5472.CAN-15-2962
    [41] Tabassum DP, Polyak K. Tumorigenesis: it takes a village[J]. Nat Rev Cancer, 2015, 15(8):473-483. doi: 10.1038/nrc3971
    [42] Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy[J]. Nat Rev Drug Discov, 2020, 19 (1):39-56. doi: 10.1038/s41573-019-0044-1
    [43] Roesch A, Vultur A, Bogeski I, et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow- cycling JARID1B(high) cells[J]. Cancer Cell, 2013, 23 (6):811-825. doi: 10.1016/j.ccr.2013.05.003
    [44] Glasspool RM, Teodoridis JM, Brown R. Epigenetics as a mechanism driving polygenic clinical drug resistance[J]. Br J Cancer, 2006, 94 (8):1087-1092. doi: 10.1038/sj.bjc.6603024
    [45] Shaffer SM, Dunagin MC, Torborg SR, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance[J]. Nature, 2017, 546(7658):431-435. doi: 10.1038/nature22794
    [46] Katayama R. Drug resistance in anaplastic lymphoma kinase-rearranged lung cancer[J]. Cancer Sci, 2018, 109(3):572-580. doi: 10.1111/cas.13504
    [47] Kang J, Chen HJ, Zhang XC, et al. Heterogeneous responses and resistant mechanisms to crizotinib in ALK- positive advanced nonsmall cell lung cancer[J]. Thorac Cancer, 2018, 9(9):1093-1103. doi: 10.1111/1759-7714.12791
    [48] Kim S, Kim TM, Kim DW, et al. Heterogeneity of genetic changes associated with acquired crizotinib resistance in ALK-rearranged lung cancer[J]. J Thorac Oncol, 2013, 8(4):415-422. doi: 10.1097/JTO.0b013e318283dcc0
    [49] Jamal- Hanjani M, Wilson GA, McGranahan N, et al. Tracking the evolution of non-small-cell lung cancer[J]. N Engl J Med, 2017, 376 (22):2109-2121. doi: 10.1056/NEJMoa1616288
    [50] Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. N Engl J Med, 2012, 366(10):883-892. doi: 10.1056/NEJMoa1113205
    [51] Cai W, Lin D, Wu C, et al. Intratumoral heterogeneity of ALK-rearranged and ALK/EGFR coaltered lung adenocarcinoma[J]. J Clin Oncol, 2015, 33(32):3701-3709. doi: 10.1200/JCO.2014.58.8293
    [52] Shao Y, Zhong DS. Histological transformation after acquired resistance to epidermal growth factor tyrosine kinase inhibitors[J]. Int J Clin Oncol, 2018, 23(2):235-242. doi: 10.1007/s10147-017-1211-1
    [53] Yan T, Cui H, Zhou Y, et al. Multi-region sequencing unveils novel actionable targets and spatial heterogeneity in esophageal squamous cell carcinoma[J]. Nat Commun, 2019, 10(1):1670. doi: 10.1038/s41467-019-09255-1
    [54] Li X, Guo X, Li D, et al. Multi-regional sequencing reveals intratumor heterogeneity and positive selection of somatic mtDNA mutations in hepatocellular carcinoma and colorectal cancer[J]. Int J Cancer, 2018, 143(5):1143-1152. doi: 10.1002/ijc.31395
    [55] De Rubis G, Krishnan SR, Bebawy M. Circulating tumor DNA-Current state of play and future perspectives[J]. Pharmacol Res, 2018, 136: 35-44. doi: 10.1016/j.phrs.2018.08.017
    [56] Jamal-Hanjani M, Hackshaw A, Ngai Y, et al. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study[J]. PLoS Biol, 2014, 12(7):e1001906. doi: 10.1371/journal.pbio.1001906
    [57] Wolf Y, Bartok O, Patkar S, et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma[J]. Cell, 2019, 179(1): 219-235.e221. doi: 10.1016/j.cell.2019.08.032
    [58] Andor N, Graham TA. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity[J]. Nat Med, 2016, 22(1):105- 113 doi: 10.1038/nm.3984
    [59] Mroz EA, Tward AD, Pickering CR, et al. High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma[J]. Cancer, 2013, 119(16):3034- 3042. doi: 10.1002/cncr.28150
  • 加载中
图(1)
计量
  • 文章访问数:  1761
  • HTML全文浏览量:  191
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-03
  • 刊出日期:  2020-12-26

目录

    /

    返回文章
    返回