-
摘要: 恶性肿瘤为目前人类延长预期寿命的最大障碍。化疗是临床上抗肿瘤治疗的重要手段,但恶性肿瘤极易在化疗中产生多药耐药性(multidrug resistance,MDR)从而导致患者的不良预后。恶性肿瘤的MDR已被证实通过多种机制产生,如药物转运与吸收、细胞凋亡和DNA损伤修复等。蛋白糖基化修饰在肿瘤MDR中扮演重要角色。本文通过对蛋白糖基化修饰在肿瘤MDR中的分子机制进行综述,以期为临床上恶性肿瘤MDR的逆转提供理论基础。Abstract: Malignant tumors are currently the main obstacle to prolonging life expectancy. Although chemotherapy is an important therapeutic measure for malignant tumors, a multidrug-resistant phenotype can be progressively induced in malignant tumors during chemotherapy, leading to poor prognosis. Multidrug resistance is reportedly associated with a number of mechanisms, including drug transport and absorption, apoptosis, and DNA damage repair. Recent studies have shown that protein glycosylation plays an important role in multidrug resistance in tumors. This article reviews molecular mechanisms by which protein glycosylation contributes to tumor multidrug resistance, which are expected to provide theoretical bases for clinically reversing multidrug resistance.
-
Keywords:
- protein glycosylation /
- multidrug resistance /
- malignant tumor /
- drug transport /
- apoptosis /
- DNA damage repair
-
全球肿瘤发病率和死亡率均迅速增长,已成为人类延长预期寿命的最大障碍[1]。随着科学进步,肿瘤的诊疗技术虽在诸多方面取得重大进展,但肿瘤多药耐药性(multidrug resistance,MDR)仍为临床治疗掣肘,是导致肿瘤患者预后不良及高死亡率的主要原因之一。MDR是指肿瘤细胞对具有不同结构和作用机制的化疗药物的耐药性[2]。MDR通过多种机制产生,如能量依赖性外排蛋白的过表达,药物吸收减少、细胞凋亡的抑制、DNA损伤修复、上皮-间质转换(epithelial-mesenchymal transition,EMT)、药物靶标的增加或改变、细胞周期的改变等[3]。糖基化是最重要的蛋白质翻译后修饰之一,超过80%人类蛋白质可被糖基化修饰。研究表明,蛋白糖基化异常与肿瘤的发生发展及化疗耐药等恶性表型紧密相关[4]。阐明蛋白糖基化修饰与肿瘤MDR之间的分子机制,有望为逆转肿瘤的MDR提供理论依据。本文对蛋白糖基化修饰及其在恶性肿瘤MDR中的分子机制进行综述。
1. 蛋白糖基化修饰
蛋白糖基化修饰是指在糖基转移酶(glycosyltransferase,GT)作用下将糖类转移至蛋白质,并与蛋白质上的氨基酸残基形成糖苷键的过程。根据糖苷键不同,可将蛋白质糖基化分为:N-糖基化(N-glycosylation)、O-糖基化(O-glycosylation)、糖基磷脂酰肌醇化(glycophosphatidylinositol)以及C-甘露糖基化(C-mannosylation),其中N-糖基化及O-糖基化是最主要的修饰类型[5]。
1.1 N-glycosylation
N-聚糖是指由N-乙酰氨基葡萄糖(N-acetylglucosamine,GlcNAc)通过β-1糖苷键连接到天冬酰胺残基侧链氮原子上的过程。N-聚糖分支由2个GlcNAc残基和3个甘露糖残基组成核心五糖,该结构与磷酸二氢乙醇酯相连后翻转至内质网腔侧,在其中加入单糖以形成14糖链。寡糖基转移酶(oligosaccharyl transferase,OST)将该糖链添加到天冬酰胺残基,新生的糖-蛋白结合物在内质网质控后移至高尔基体加工成熟。
1.2 O-糖基化
O-糖基化是指丝氨酸/苏氨酸/酪氨酸的羟基共价连接碳水化合物残基的过程。O-糖基化根据与蛋白质连接的初始聚糖进一步细分为黏蛋白型O-糖基化和O-乙酰氨基葡萄糖糖基化(O-GlcNAcylation)。黏蛋白型O-糖基化在高尔基体中通过多肽N-乙酰半乳糖胺基转移酶(polypeptide N-acetylgalactosaminyltransferase,GALNT)将N-乙酰半乳糖胺(N-acetylgalactosamine,GalNAc)残基从尿苷5'-二磷酸-N-乙酰氨基葡萄糖(UDP-GalNAc)转移到丝氨酸或苏氨酸残基以产生Tn抗原[6],Tn抗原可被唾液酸化为唾液酸-Tn抗原(sTn),导致糖链过早终止伸长。然而,O-GlcNAcylation不易在高尔基体中发生[7],而是通过N-乙酰氨基葡萄糖转移酶(O-GlcNAc transferase,OGT)和N-乙酰氨基葡萄糖水解酶(O-GlcNAcase,OGA)来调控单个O-GlcNAc残基的可逆添加[8]。
2. 蛋白糖基化修饰与肿瘤MDR
蛋白翻译后的糖基化修饰已被证实可通过多种途径介导肿瘤MDR的产生。
2.1 调控药物转运与吸收
ATP结合盒转运蛋白(ATP binding cassette transporter,ABC)是一种广谱药物外排泵,包括乳腺癌耐药蛋白(breast cancer resistance protein/ATP- binding cassette subfamily G member 2,BCRP/ABCG2),糖蛋白(ATP- binding cassette sub- family B member 1/Pglycoprotein,ABCB1/P-gp)和MDR相关蛋白(multidrug resistance- associated protein,MRP)等。Beretta等[9]研究发现,降低卵巢癌细胞中MRP1和MRP4的N-糖基化修饰水平可导致奥沙利铂和顺铂蓄积,从而增加肿瘤细胞的化疗敏感性。GnT-V则可通过促进人类平衡型核苷转运蛋白1的N-糖基化及转运活性来增强膀胱癌T24细胞对吉西他滨的摄取[10]。N-糖基化抑制剂衣霉素下调ABCG2的N-糖基化修饰水平后,不仅能减少多种肝癌细胞系对顺铂的外排[11],还能增加头颈癌IMC-3和KB耐药细胞系的顺铂敏感性[12]。苦马豆素被报道可通过抑制ABCB1的N-糖基化水平来下调ABCB1蛋白表达,从而增加艾氏腹水癌细胞对顺铂的化疗敏感性[13]。苦马豆素还可通过抑制结肠癌细胞中的N-聚糖水平来影响5-氟尿嘧啶代谢酶的表达从而促进肿瘤细胞对药物的吸收与代谢,增加肿瘤细胞对5-氟尿嘧啶的敏感性[14],O-糖基化的黏蛋白过表达可以产生空间位阻和掩盖表面抗原,减少胰腺癌细胞对5-氟尿嘧啶的吸收[15]。
2.2 调节细胞凋亡途径
肿瘤细胞往往可以通过逃避药物诱导的细胞凋亡来产生化疗抗性。OGT通过抑制凋亡调节因子的表达来降低肿瘤细胞的凋亡水平,从而导致胃癌及肝癌对5-氟尿嘧啶耐药[16]。Shen等[17]研究发现,β- 1,3-N-乙酰基氨基葡萄糖氨基转移酶8通过促进结肠癌SW620细胞中N-聚糖支链聚乳糖胺的生物合成来抑制5-氟尿嘧啶介导的细胞凋亡从而导致耐药。Kanwal等[18]研究表明,乳腺癌MCF-7细胞可通过O-糖基化修饰来抑制雌激素受体α表达,从而逃逸他莫昔芬诱导的细胞凋亡。α-2,6唾液酸转移酶(α-2,6 sialyltransferase,ST6Gal-1)过表达可抑制顺铂和5-氟尿嘧啶所诱导的胃癌细胞凋亡[19],而下调其表达则可增加卵巢癌细胞中顺铂诱导的细胞凋亡[20]。抑制N-糖基化也被报道不仅能增加多种化疗药物所致胃癌耐药细胞的凋亡[21],还可通过细胞周期停滞和促进凋亡来提高Her-2过表达的乳腺癌细胞对曲妥珠单抗的敏感性[22]。Wagner等[23]研究表明,GALNT14可催化非小细胞肺癌和胰腺癌中死亡受体O-糖基化来激活凋亡通路,增加肿瘤细胞对索拉非尼及5-氟尿嘧啶的敏感性。
2.3 DNA损伤修复
黏蛋白(mucin,MUC)是一类具有高度O-糖基化修饰的糖蛋白。MUC1被证实可通过减少DNA损伤来导致结肠癌HCT116细胞及肺腺癌A549细胞的顺铂耐药性[24]。沉默MUC13可抑制NF-κB信号通路,增加不同化疗药诱导的DNA损伤,从而增加结肠癌细胞的化疗敏感性[25]。此外,ST6Gal-1可促进肿瘤坏死因子受体1的唾液酸化,从而减少吉西他滨所致的DNA损伤,进而导致胰腺癌细胞的化疗抵抗[26]。
2.4 其他
β1-整联蛋白(β1-integrin)的N-糖基化可促进乳腺癌SKBR-3细胞EMT进程进而导致其对曲妥珠单抗(和拉帕替尼)耐药[27],鸟苷酸结合蛋白β多肽2样蛋白1(guanine nucleotide- binding protein subunit Beta 2-like 1,GNB2L1)的O-糖基化修饰则可促进EMT进程来导致胃癌MDR[28]。分子靶标表皮生长因子受体(epidermal growth factor receptor,EGFR)的唾液酸化可抑制卵巢癌中吉非替尼介导的细胞死亡[29],而抑制EGFR的N-糖基化可逆转非小细胞肺癌对EGFR-酪氨酸激酶抑制剂的抗性[30]。DNA去甲基酶的O-糖基化修饰可激活核因子E2相关因子2的活性导致结肠癌细胞对5-氟尿嘧啶产生抗性[31]。岩藻糖基化是N-聚糖及黏蛋白末端的另一种修饰,岩藻糖基转移酶4(fucoidyltransferase 4,FUT4)过表达可促进乳腺癌T47D细胞的MDR [32]。
3. 展望
糖基化作为蛋白翻译后修饰的重要手段之一,参与肿瘤细胞对化疗药物的泵出、摄入及吸收代谢,细胞凋亡、DNA损伤修复、EMT等多种肿瘤耐药机制。虽然体外实验已证明糖基化抑制剂可逆转肿瘤MDR,但需要更多的体内实验及针对肿瘤患者的临床多阶段试验证明其有效性及安全性。糖基化蛋白作为相关靶点的临床应用仍具挑战性。深入探究蛋白糖基化修饰与肿瘤MDR的分子机制能为开发新的肿瘤分子靶标、肿瘤临床疗效评估、逆转肿瘤相关MDR提供更好的策略。
-
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. DOI: 10.3322/caac.21492
[2] Chang YT, Wang CCN, Wang JY, et al. Tenulin and isotenulin inhibit Pglycoprotein function and overcome multidrug resistance in cancer cells[J]. Phytomedicine, 2019, (53):252-262.
[3] Kartal-Yandim M, Adan-Gokbulut A, Baran Y. Molecular mechanisms of drug resistance and its reversal in cancer[J]. Crit Rev Biotechnol, 2016, 36(4):716-726.
[4] Oliveira-Ferrer L, Legler K, Milde-Langosch K. Role of protein glycosylation in cancer metastasis[J]. Semin Cancer Biol, 2017, (44):141-152. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_395666
[5] Rodriguez Benavente MC, Argüeso P. Glycosylation pathways at the ocular surface[J]. Biochem Society Trans, 2018, 46(2):343-350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0a846fa6cf0e8ee29d172e8e86d0ae34
[6] Zhang Q, Li Z, Chernova T, et al. Synthesis and characterization of versatile o-glycan precursors for cellular O-GlcNAcylation[J]. ACS Synth Biol, 2019, 8(11):2507-2513. DOI: 10.1021/acssynbio.9b00168
[7] Yang X, Qian K. Protein O-GlcNAcylation:emerging mechanisms and functions[J]. Nat Rev Mol Cell Biol, 2017, (18):452-465. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223732989/
[8] Zachara N, Akimoto Y, Hart GW, et al. Essentials of glycobiology[Internet][M]. 3rd edition, cold spring harbor (NY): Cold Spring Harbor Laboratory Press, 2017, (12): 2015-2017.
[9] Beretta GL, Benedetti V, Cossa G, et al. Increased levels and defective glycosylation of MRPs in ovarian carcinoma cells resistant to oxaliplatin[J]. Biochem Pharmacol, 2010, 79(8):1108-1117. DOI: 10.1016/j.bcp.2009.12.002
[10] Tang Y, Cong X, Wang S, et al. GnT-V promotes chemosensitivity to gemcitabine in bladder cancer cells through β1, 6 GlcNAc branch modification of human equilibrative nucleoside transporter 1[J]. Biochem Biophys Res Commun, 2018, 503(4):3142-3148. DOI: 10.1016/j.bbrc.2018.08.107
[11] Hou H, Sun H, Lu P, et al. Tunicamycin potentiates cisplatin anticancer efficacy through the DPAGT1/Akt/ABCG2 pathway in mouse Xenograft models of human hepatocellular carcinoma[J]. Mol Cancer Ther, 2013, 12(12):2874-2884. DOI: 10.1158/1535-7163.MCT-13-0201
[12] Noda I, Fujieda S, Seki M, et al. Inhibition of N-linked glycosylation by tunicamycin enhances sensitivity to cisplatin in human head-and-neck carcinoma cells[J]. Int J Cancer, 1999, 80(2):279-284. DOI: 10.1002/(SICI)1097-0215(19990118)80:2<279::AID-IJC18>3.0.CO;2-N
[13] Santos FM, Latorre AO, Hueza IM, et al. Increased antitumor efficacy by the combined administration of swainsonine and cisplatin in vivo[J]. Phytomedicine, 2011, (18):1096-1101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a307f9b7d527eeebeb424bdc2968a306
[14] Hamaguchi J, Nakagawa H, Takahashi M, et al. Swainsonine reduces 5-fluorouracil tolerance in the multistage resistance of colorectal cancer cell lines[J]. Mol Cancer, 2007, (6):58. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_32d978ea8a8b880b94b84596550233c2
[15] Kalra AV, Campbell RB. Mucin overexpression limits the effectiveness of 5-FU by reducing intracellular drug uptake and antineoplastic drug effects in pancreatic tumours[J]. Eur J Cancer, 2009, (45):164-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7303a4ab58ad89966dcb9c9eb8c9e21d
[16] Pepe F, Pagotto S, Soliman S, et al. Regulation of miR-483-3p by the Olinked N-acetylglucosamine transferase links chemosensitivity to glucose metabolism in liver cancer cells[J]. Oncogenesis, 2017, 6(5):e328. DOI: 10.1038/oncsis.2017.35
[17] Shen L, Dong X, Wang Y, et al. β3GnT8 regulates oxaliplatin resistance by altering integrin β1 glycosylation in colon cancer cells[J]. Oncol Rep, 2018, 39(4):2006-2014.
[18] Kanwal S, Fardini Y, Pagesy P, et al. O-GlcNAcylation-inducing treatments inhibit estrogen receptor α expression and confer resistance to 4-OH-tamoxifen in human breast cancer-derived MCF-7 cells[J]. PLoS One, 2013, 8(7):e69150. DOI: 10.1371/journal.pone.0069150
[19] Santos SN, Junqueira MS, Francisco G, et al. O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer[J]. Oncotarget, 2016, 7(50):83570-83587.
[20] Schultz MJ, Swindall AF, Wright JW, et al. ST6Gal-I sialyltransferase confers cisplatin resistance in ovarian tumor cells[J]. J Ovarian Res, 2013, 6(1):25. DOI: 10.1186/1757-2215-6-25
[21] Wu J, Chen S, Liu H, et al. Tunicamycin specifically aggravates ER stress and overcomes chemoresistance in multidrug-resistant gastric cancer cells by inhibiting N-glycosylation[J]. J Exp Clin Cancer Res, 2018, 37(1):272. DOI: 10.1186/s13046-018-0935-8
[22] Han X, Zhang X, Li H1, et al. Tunicamycin enhances the antitumor activity of trastuzumab on breast cancer in vitro and in vivo[J]. Oncotarget, 2015, 6(36):38912-38925.
[23] Wagner KW, Punnoose EA, Januario T, et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL[J]. Nat Med, 2007, 13(9):1070-1077. DOI: 10.1038/nm1627
[24] Ren J, Agata N, Chen D, et al. Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents[J]. Cancer Cell, 2004, 5(2):163-175. DOI: 10.1016/S1535-6108(04)00020-0
[25] Sheng YH, He Y, Hasnain SZ, et al. MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target[J]. Oncogene, 2017, (36):700-713.
[26] Chakraborty A, Dorsett KA, Trummell HQ, et al. ST6Gal-I sialyltransferase promotes chemoresistance in pancreatic ductal adenocarcinoma by abrogating gemcitabine-mediated DNA damage[J]. J Biol Chem, 2018, 293(3):984-994. DOI: 10.1074/jbc.M117.808584
[27] Lesniak D, Sabri S, Xu Y, et al. Spontaneous epithelial-mesenchymal transition and resistance to HER-2-targeted therapies in HER-2-positive luminal breast cancer[J]. PLoS One, 2013, 8(8):e71987. DOI: 10.1371/journal.pone.0071987
[28] Cheng S, Mao Q, Dong Y, et al. GNB2L1 and its O-GlcNAcylation regulates metastasis via modulating epithelial-mesenchymal transition in the chemoresistance of gastric cancer[J]. PLoS One, 2017, 12(8):e0182696. DOI: 10.1371/journal.pone.0182696
[29] Britain CM, Holdbrooks AT, Anderson JC, et al. Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death[J]. J Ovarian Res, 2018, 11(1):12. DOI: 10.1186/s13048-018-0385-0
[30] Lopez Sambrooks C, Baro M, Quijano A, et al. Oligosaccharyltransferase Inhibition Overcomes Therapeutic Resistance to EGFR Tyrosine Kinase Inhibitors[J]. Cancer Res, 2018, 78(17):5094-5106. DOI: 10.1158/0008-5472.CAN-18-0505
[31] Kang KA, Piao MJ, Ryu YS, et al. Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells[J]. Oncotarget, 2016, 7(26):40594-40620.
[32] Feng X, Zhao L, Gao S, et al. Increased fucosylation has a pivotal role in multidrug resistance of breast cancer cells through miR-224-3p targeting FUT4[J]. Gene, 2016, 578(2):232-241. DOI: 10.1016/j.gene.2015.12.028
-
期刊类型引用(1)
1. 冯博,刘姿宇,李月,刘立琨,岳丽玲. 岩藻糖基化与肿瘤多药耐药. 中国比较医学杂志. 2023(01): 113-118 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 180
- HTML全文浏览量: 13
- PDF下载量: 17
- 被引次数: 3